• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The muscle specific protein synthesis response to acute running exercise utilizing multiple stable isotope tracers

Crane, Justin D. January 2008 (has links)
The purpose of this study was to compare the anabolic response to acute running exercise in two different leg muscles in endurance-trained men using two different stable isotope tracers. 6 male subjects (26±2 yr; V02max 63±2 ml•kg-' •min-') performed a 45 min treadmill run at 77±1 % intensity. Infusions of d3-leucine and d5-phenylalanine were used to measure mixed muscle FSR at rest and 24 hr post-exercise. An additional infusion of 10% amino acid solution was added to the post-exercise infusion to maximize the muscle anabolic response. Muscle biopsies were obtained from the vastus lateralis (VL) and soleus (SOL) at 2 and 6 hr of the infusion for the measurement of isotope incorporation. Additional muscle biopsies were obtained prior to and 4 hr post-exercise for determination of muscle glycogen use. At rest FSR was similar between the VL and SOL using either tracer (p>0.05). At 24 hr post-exercise FSR was elevated in both muscles, independent of the tracer used (p<0.05). Muscle glycogen was decreased to the same extent in both muscles by -31% at 4 hr post-exercise (p<0.05). These data suggest that the VL and SOL muscles are both stimulated similarly during 45 min of level grade running. Additionally, both muscles respond similarly 24 hr post-exercise, independent of the tracer used for the determination of protein synthesis. / School of Physical Education, Sport, and Exercise Science

Page generated in 0.1576 seconds