• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 348
  • 216
  • 64
  • 29
  • 13
  • 7
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 859
  • 859
  • 204
  • 198
  • 129
  • 91
  • 87
  • 79
  • 77
  • 71
  • 69
  • 65
  • 52
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Linking Hydroperiod with Water Use and Nutrient Accumulation in Wetland Tree Islands

Wang, Xin 06 May 2011 (has links)
Many large terrestrial ecosystems have patterned landscapes as a result of a positive feedback system between vegetation communities and environmental factors. One example is tree island habitats in the Florida Everglades. Although they only occupy a small portion of the Everglades landscape, tree islands are important features as the focus of nutrient accumulation and wildlife biodiversity in the Everglades ecosystem. The hardwood hammock community on the elevated head of tree island habitats can accumulate high phosphorus concentration in the otherwise P-limited Everglades ecosystem. In this dissertation, I examined two hypotheses derived from the chemohydrodynamic nutrient accumulation model, which suggests that high transpiration of tree island hammock plants is the driving force for nutrient accumulation in tree island soil. According to this model, I hypothesized that tree islands with lower dry season transpiration should have less phosphorus accumulated than the tree islands with higher dry season transpiration. By examining the water use and nutrient status from 18 tree islands in both slough (perennially wet) and prairie (seasonally wet) locations, I was able to compare water availability and nutrient accumulation in slough and prairie tree islands with different marsh hydroperiods. Chapter 1 uses elemental and stable isotope analysis to look at water stress and nutrient concentration in tree island plants. I showed that the prairie tree island plants suffer from drought stress during the dry season, when the marshes in the prairies dry out. Prairie tree islands also have lower soil and plant P concentration than the slough tree islands. Moreover, I showed that foliar N isotope ratio serves as a stable proxy for community level P availability for tree island plants, and prairie tree island plants have less P available than slough tree island plants. In Chapter 2, I showed that the satellite imagery derived normalized difference water index (NDWI) provides a robust indicator of community level canopy water content of these tree islands. NDWI, used as a proxy for water status, was positively related to foliar N isotope ratio, which suggests that water availability is linked to nutrient availability in the tree island hardwood hammock plant communities. These findings are consistent to the chemohydrodynamic nutrient accumulation model. In Chapter 3, I used sap flow sensors on individual trees to provide a real-time measurement of plant transpiration. I showed that tree island plant transpiration is affected by multiple factors including weather fluctuations, marsh water depth regulated by local water management, and canopy structure of different tree islands. Overall, my dissertation establishes a link between tree island plant water use and nutrient accumulation. It could be potentially important for future restoration plan of tree islands and Everglades hydrological management.
82

A 7600-year Record of Environmental History from the Sediments of Laguna Tortuguero, Puerto Rico

Schoen, Alice Renee 01 August 2011 (has links)
In 1987, Burney and collaborators (Journal of Archaeological Science (1994) 21, 273–281) recovered a ca. 8 m sediment core from the western basin of Laguna Tortuguero, Puerto Rico that spanned the last ca. 7000 calibrated years. They produced a detailed microscopic charcoal record, and from an initial peak in charcoal at ca. 5300 cal yr B.P. suggested that humans had colonized the island some 2000 years earlier than documented by the archaeological evidence then available. In 2008, two sediment cores were recovered from the eastern basin of Laguna Tortuguero. AMS dates on macrofossils indicate the profile extends to 7600 calibrated years, but it includes an interval with missing sediment marked by a layer of shell hash and bracketed by radiocarbon dates of 5144 and 1648 cal yr B.P. Stable carbon and nitrogen isotopic analyses show evidence for a drastic change in depositional environment following this event. Microscopic charcoal concentrations peak just below and at the contact of the shell hash, with the first of three high-charcoal levels positioned immediately above the date of 5144 cal yr B.P. The microscopic charcoal record appears to support the interpretations of Burney et al. (1994) of human colonization around 5300 cal yr B.P., although the fires recorded in the Laguna Tortuguero sediments may also be driven by regional climate shifts. Desiccation of Laguna Tortuguero, a hurricane or multiple hurricanes, or a tsunami could explain the missing sediments and the large change in depositional environment that occurs above the shell hash. AMS dating of sediment from the mud-water interface at the 2008 core site suggests a possible hard-water effect of ca. 1200 cal yr for dates on the algal gyttja above the shell hash, which if true would mean that the event that deposited the shell hash may have occurred as late as ca. 448 cal yr B.P. (A.D. 1502).
83

Effects of the Arundo donax L. on Hydrological Regime of the Rio Grande Basin

Li, Fan 2012 May 1900 (has links)
This study investigated the role of an invasive tall cane, Arundo donax L. (Arundo), in the riparian water cycle. Four 100 meter transects were arrayed perpendicular to the lower Rio Grande in southwest Texas. The first objective was to determine the primary water source for Arundo by using naturally occurring stable isotopes. Surface soil, river water, groundwater, precipitation and rhizome samples were collected every month during 2010 and 2011 growing seasons, which coincided with a major flood that saturated soils in the first year followed by extreme drought in the second year. The second objective was to characterize how Arundo water use varied with water availability gradients in the riparian zone. Leaf gas exchange and leaf delta13C were measured along potential moisture gradients. The third objective was to understand the interaction between groundwater and surface water, and whether Arundo water use affected daily groundwater fluctuations. The isotope ratio of rhizome water was consistent with shallow soil moisture uptake and with previous observations of a relatively shallow, fibrous root system. Floodwater from July 2010 persisted in the soil for at least a year despite a severe drought, and became the dominant water source for Arundo during much of the study period. Although the alluvial water table in this floodplain was shallow (< 6 m) and subject to changes in river level, groundwater seemed not to be an important source for Arundo, so long as the soil moisture was sufficient. In this study, Arundo was not found to experience soil moisture limitation, and the spatial variability of Arundo transpiration was not associated with any soil moisture availability gradients. Arundo was found to close its stomata in response to increasing vapor pressure deficit (VPD), causing declining transpiration rate and increasing leaf delta13C composition. Significant exchange between the river and the alluvial groundwater was reflected in the similarity of isotopic compositions and the high correlation between river and groundwater elevations. Cross correlation analysis showed that over 50% of the diurnal groundwater fluctuations were caused by river stage changes. Consistent with the above ecophysiological and stable isotope results, Arundo water use was not found to influence daily groundwater fluctuations.
84

Pliocene climate change on Ellesmere Island, Canada : annual variability determined from stable isotopes of fossil wood

Csank, Adam Zoltan 03 July 2006
Tree-ring analyses have contributed significantly to investigations of climate change and climate cycles, including the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Stable isotope climate proxies (?18O, ?D, and ?13C) have enhanced traditional ring-width data, although poor preservation of ancient wood has generally constrained reconstruction of stable isotope proxy records to the Holocene and Late Pleistocene. An opportunity to apply these stable isotope methods to older wood has been presented by recovery of remains of Mixed-Coniferous Boreal Vegetation, in Early Pliocene (4-5 Ma) deposits at Strathcona Fiord, Ellesmere Island, Canada (~79°N). An exceptionally well-preserved tree trunk, identified as Larix (larch) through wood anatomical characteristics, from this high Arctic site provided a 203-year tree-ring record, from which we present the first high-resolution, secular isotope record of Pliocene climate. ?18O, ?D, and ?13C isotope values indicate a variable climate with alternating intervals of cool/wet to warm/dry weather. These fluctuations in climate may be attributable to phase changes in climate cycles observed in the record. A growing season mean temperature of 14.4 °C was calculated from isotopic analysis of gastropod shells. Palaeoclimatic modeling of tree isotope values has revealed growing season temperatures of 11-15 °C, and estimated isotope values of precipitation of 18.3 (?18O) and 228 (?D). Both palaeotemperature estimates and source water calculations are comparable to those found in a modern Boreal Forest. Time-series wavelet analysis was applied to these data revealing prominent short (<10 years), intermediate (16-35 years) and long-term (~45-50 years) cyclicity. These are the highest resolution climate cycles recovered from the pre-Holocene terrestrial record, providing evidence for decadal scale cyclicity similar to the NAO and/or PDO 4-5 million years ago.
85

Energy Flow and Food Web Ecology along a Hydroperiod Gradient

Schriever, Tiffany 07 January 2013 (has links)
Identifying the ecological mechanisms that determine food web structure is critical for understanding the causes and consequences of diversity. The objective of this thesis was to identify the mechanisms structuring aquatic food webs across environmental gradients from a multi-level perspective (individual to ecosystem) using integrative methodology and field experiments to test classic ecological theory. My results demonstrate support for the dynamic constraints hypothesis, which predicts habitats with greater disturbance should have shorter food chains, but are not consistent with the ecosystem size hypothesis that predicts larger ecosystems have longer food chains. Insect and amphibian richness increased with increasing pond size and hydroperiod, indicating that insertion of new consumers into pond communities was driving variation in food-chain length. A multivariate analysis testing the influence of physicochemical variables on food-web characteristics revealed that hydroperiod and pond area had a strong influence on amphibian and invertebrate assemblages, trophic diversity and 15N range. Food-chain length did not respond strongly to any one variable, but instead responded weakly to multiple environmental variables, suggesting interacting influences on food-web structure. Conversely, the trophic niche of amphibian larvae was not influenced by pond hydroperiod, but did exhibit ontogenetic diet shifts. Populations of amphibian larvae with broader niche widths also had increased individual variation, supporting the niche variation hypothesis. In addition, I assessed whether species diversity influenced the magnitude of cross-habitat resource flow between aquatic and terrestrial habitats via emerging aquatic insects, metamorphosing amphibians, and litter deposition. Deposition into ponds far exceeded carbon exported via insect and amphibian emergences. We found a negative relationship between resource flux and the diversity of amphibians and insects, which contradicts the general pattern of positive biodiversity-ecosystem function relationships. My research strongly suggests environmental variation is a key process in shaping food-web structure and function and that multiple methodologies are needed to understand temporal and spatial dynamics of aquatic ecosystems.
86

Reconstructing palaeoenvironments using variations in the isotopic composition of bison tooth enamel carbonate from Saskatchewan archaeological sites

2011 June 1900 (has links)
Lack of calibrated instruments and written records prior to European contact in North America has forced palaeoclimatic researchers to develop various proxies capable of reconstructing ancient environments. Stable isotope analysis of tooth enamel of large terrestrial herbivores has increasingly become a creditable method of determining the ancient environments which these large mammals occupied during life. Archaeological evidence indicates human inhabitants of the northern Great Plains relied heavily on bison procurement throughout much of the Holocene. Because of this correlation, stable isotope analysis of bison tooth enamel has the capability of informing on palaeoenvironmental conditions which these ancient cultural groups occupied for the last 10,000 years on the northern Great Plains. Decades of research has provided evidence that stable isotope analysis of tooth enamel of large bodied herbivores (e.g. bovids) has the potential to be used as a proxy for reconstructing palaeoclimate, palaeoecology, foraging strategies and herd behaviour. Oxygen (δ 18O) isotope ratios are used as a proxy to track the meteoric hydraulic cycle (i.e. precipitation), which in turn is driven by local surface temperatures. Carbon (δ13C) isotope ratios have the ability to indicate photosynthetic pathways used by plant species, thus indicating local terrestrial plant cover. Dietary intake of water (δ 18O) and food (δ13C) are associated with isotopic signals which are recorded in the tooth enamel of a bison during amelogenesis (tooth enamel formation). Once tooth enamel is formed it never remodels; therefore, isotopic ratios recovered from fossil enamel become an archive of dietary consumption. In general, δ 18O isotope ratios are used to determine surface water and surface temperature conditions, whereas δ13C isotope values are used to indicate the abundance of C3 to C4 grasses consumed during an animal’s life. This study analyzes stable isotope (δ 18O and δ13C) ratios obtained from fossil bison enamel associated with archaeological sites in the northern Great Plains (Saskatchewan) region. The purpose of this study is to create a comparative model used to indicate ancient seasonality and palaeoenvironmental conditions over a 9,000 year period in the Holocene. A total of eight archaeological sites were examined, with each site representing a distinct time period and an affiliated human culture. In addition, isotope (δ 18O and δ13C) ratios recovered from tooth enamel was compared to isotope (δD and δ13C) values previously (Leyden 2004) examined from bone collagen of bison remains from the same archaeological sites. Results of this study demonstrates that original isotopic values from consumed water (δ 18O) and food (δ13C) from archaeological bison tooth enamel reflects seasonal changes for an approximate 18 month period. Further, results from this study also indicate that several climate and plant ecology changes occurred in the Saskatoon, Saskatchewan region over the last 9,000 years. Episodes of climate warming and cooling have been inferred by changes in δ 18O ratios at different time periods of the Holocene. Similarly, significant differences are also detected in δ13C values from different archaeological sites, inferring that bison populations consumed various abundances of C4 grasses at different time periods. In addition, evidence from this study has indicated that stable isotope ratios from enamel (δ 18O) and collagen (δD) from the same archaeological site, for the purpose of inferring climate conditions, demonstrate differing data for several time periods and close correlations for others. On the contrary, δ13C from both tooth enamel and bone collagen from each archaeological site produce comparable data which were used to measure the abundance of C4 grasses consumed by bison population during particular time periods.
87

A process-based stable isotope approach to carbon cycling in recently flooded upland boreal forest reservoirs

Venkiteswaran, Jason January 2002 (has links)
Reservoirs impound and store large volumes of water and flood land. The water is used for electricity generation, irrigation, industrial and municipal consumption, flood control and to improve navigation. The decomposition of flooded soil and vegetation creates greenhouse gases and thus reservoirs are a source of greenhouse gases. Reservoirs are not well studied for greenhouse gas flux from the water to the atmosphere. The FLooded Upland Dynamics EXperiment (FLUDEX) involves the creation of three experimental reservoirs in the upland boreal forest to study greenhouse gas and mercury dynamics. The balance of biological processes, decomposition, primary production, CH<sub>4</sub> oxidation and the nitrogen cycle in the reservoirs controls the greenhouse gas flux from the reservoir to the atmosphere. Understanding the importance and controlling factors of these processes is vital to understanding the sources and sinks of greenhouse gases within reservoirs. The carbon and oxygen dynamics near the sediment-water interface are very important to the entire reservoir because many processes occur in this area. Light and dark benthic chambers were deployed, side-by-side, to determine the benthic flux of DIC and CH<sub>4</sub> across the sediment-water interface and to determine the role of benthic photoautotrophs in benthic DIC, CH<sub>4</sub> and O<sub>2</sub> cycling. Benthic chambers have shown photoautotrophs use the decomposing soil, rocks and exposed bedrock as a physical substrate to colonize and the CO<sub>2</sub> produced by the decomposing soil as a carbon source since the delta<sup>13</sup>C-DIC value of the DIC added to light chambers is enriched relative to dark chambers and net photosynthesis rates are linked to community respiration. Benthic photoautotrophs consume 15-33% of the potential DIC flux into the water column. CH<sub>4</sub> produced by the decomposition of soils is partially oxidized by methanotrophs that use the photosynthetically produced oxygen. The delta<sup>13</sup>C-CH<sub>4</sub> values of the CH<sub>4</sub> added to light chambers is enriched relative to dark chambers and 15-88% of the potential CH<sub>4</sub> flux into the water column is oxidized. An isotope-mass budget for DIC and CH<sub>4</sub> is presented for each reservoir to identify the importance of processes on areservoir scale. Input of DIC to the reservoirs from overland flow can be important because concentration is greater and delta<sup>13</sup>C-DIC values are depleted relative to inflow from Roddy Lake. Estimates of total reservoir primary production indicate that 3-19% of the total DIC production from decomposition is removed by photoautotrophs. The carbon cycling in biofilm and the importance of periphytic primary production needs to be better understood. Dissolved delta<sup>13</sup>C-CH<sub>4</sub> values of CH<sub>4</sub> in reservoir outflow enriched 45-60permil, indicating that CH<sub>4</sub> oxidation was an important CH<sub>4</sub> sink within the reservoirs. Stable carbon isotope data indicates that the CH<sub>4</sub> in the bubbles is partially oxidized so the site of bubble formation is the upper portion of the flooded soil. The fraction of CH<sub>4</sub> converted to CO<sub>2</sub> in the FLUDEX reservoirs is similar to that of the wetland flooded for the Experimental Lakes Area Reservoir Project (ELARP). Approximately half of the dissolved CH<sub>4</sub> in the FLUDEX reservoirs was removedby CH<sub>4</sub> oxidation. The ebullitive flux of CH<sub>4</sub> from FLUDEX reservoirs is reduced 25-75% by CH<sub>4</sub> oxidation. The CH<sub>4</sub> flux to the atmosphere from peat surface of the ELARP reservoir became less oxidized after flooding: 91% to 85% oxidized. The floating peat islands of the ELARP reservoir were less oxidized than the peat surface. Similar to the CH<sub>4</sub> in the FLUDEX reservoirs, CH<sub>4</sub> in the ELARP peat islands was oxidized 56%. CH<sub>4</sub> oxidation is an important process because it reduces the global warming potential of the greenhouse gas flux since CO<sub>2</sub> is less radiatively active than CH<sub>4</sub>.
88

Greenhouse gas flux and budget from an experimentally flooded wetland using stable isotopes and geochemistry

Saquet, Michelle January 2003 (has links)
A boreal forest wetland (L979) was flooded in 1993 at the Experimental Lakes Area, Ontario to imitate a hydroelectric reservoir and to study the effects of flooding on greenhouse gas production and emission. Flooding initially caused CO&#8322; and CH4 emission rates to increase and changed the wetland from a small, natural carbon sink to a large source of carbon. The increased production of greenhouse gases in the peatland also caused the majority of the peat to float to the surface creating floating peat islands, within 4 years of flooding. The floating peat islands are a larger source than the central pond of CH4 to the atmosphere due to the high water table and small oxidation zone as compared to the earlier undisturbed peatland. The floating peat islands had an average flux of 202 ± 66 mg C-CH4/m²/day comparable to rates measured in 1995. Methane flux rates are spatially and temporally variable ranging from ?117 to 3430 mg C-CH4/m²/day. The variability is partly due to episodic releases of gas bubbles and changes in overlying pressure from the water table. The development of floating peat islands created an underlying water pocket. The water pocket increased water movement between the central pond and the peatland and led to increased peat temperatures and methane oxidation, and removal of debris from the water pocket. DIC, CH4, and O&#8322; concentrations, and &#948;13C-DIC, &#948;13-CH4, and &#948;18O-O&#8322; values in the water pocket were similar to values in the central pond. Before flooding, the &#948;13C-CH4 values from the peatland ranged between ?36 and ?72? indicating that about 65 to 90% of the methane was oxidized before flooding. After flooding, the median &#948;13C-CH4 value from the floating peat islands was ?52? indicating that about 30% of the methane was oxidized before it was emitted to the atmosphere. Since the floating islands are now vegetated, photosynthesis and transport via plants allow the movement of oxygen into the peat islands Methane oxidation in the central pond was similar in 2001 and 2002. DIC and CH4 isotope mass budgets from June 3 to September 23, 2002 indicate that inputs were smaller than outputs at L979. Calculated net DIC and CH4 production in the central pond was 8490 and 432 kg C, with &#948;13C-DIC of -18. 5 ? and &#948;13C-CH4 of -32. 5?. Decomposition of peat was the source of DIC and CH4. O&#8322; saturation levels indicate that the pond is always undersaturated and that respiration dominates the system; however, the &#948;18O-O&#8322; also indicates that photosynthesis is an important process in the central pond of L979. The peat islands contributed about 90% of the total CH4 flux, whereas the open water areas contributed 10%. This indicates that formation of peat islands in a hydroelectric area can significantly affect the greenhouse gas emissions to the atmosphere. The average flux of CH4 from the entire wetland in 2002 was 202 ± 77 mg C-CH4/m²/day, equivalent to 44 ± 17 g C-CH4/m²/year (year = 220 days). This is higher than preflood values of 0. 5 g C-CH4/m²/year in 1992, and the early post-flood value of 8. 9 g C-CH4/m²/year in 1993/1994. The wetland continues to emit methane after ten years of flooding at higher than preflood rates.
89

Determining the relationships between forage use, climate and nutritional status of barren ground caribou, Rangifer tarandus groenlandicus, on Southampton Island, Nunavut, using stable isotopes analysis of d 13C and d 15N

McLeman, Craig January 2006 (has links)
The caribou (Rangifer tarandus groenlandicus) on Southampton Island, Nunavut, Canada for the years 1998-2000 and 2004, 2005, were investigated using stable isotope analysis (SIA) of carbon (d 13C) and nitrogen (d 15N). Spring signatures of rumen contents and muscle samples were correlated with standard biological measures of back fat and Riney kidney fat index. Caribou d 13C and d 15N ratios, together with detailed rumen content analysis, show that SIA data yields a time-integrated signal reflective of spatial and temporal variation in feeding ecology and as such is capable of detecting trophic interactions. Rumen content signatures provide current indication of forage selection, while muscle tissue signatures reflect bulk summer seasonal diet and in combination with rumen signatures, can help identify potential shifts in winter diet and the potential for short-term changes in caribou condition. <br /><br /> d 13C and d 15N signatures for major forage species categories were also compared to variations in rumen content and muscle signatures to investigate possible changes in forage preference. The results indicate that SIA is capable of assessing the importance of seasonal habitat use with regard to seasonal food intake. Stable isotopes analysis (SIA) was also used to investigate the effects of winter snow thickness and temperature on caribou (Rangifer tarandus), on Southampton Island. Variations found in isotope signatures of rumen content and muscle indicated that differences in winter climate conditions may affect forage selection, and impact on animal condition.
90

Examining oil sands dissolved carbon and microbial degradation using stable isotope analysis

Videla, Patricia Paulina January 2007 (has links)
Oil sands mining operations in northeastern Alberta are rapidly expanding. Upgrading and extracting the bitumen from the sand requires large volumes of water generating large quantities of oil sands process water/materials (OSPM) which is high in organic content. Some of the major organic components found in OSPM include unrecovered bitumen, polycyclic aromatic compounds (PACs), naphthenic acids (NAs) and humic acids. Concerns of acute and chronic toxicity resulting from OSPM have led to provincial legislation preventing the discharge of OSPM into local water and mandating the reclamation of areas affected by oil sands mining. To date, OSPM is stored on lease in settling basins while the mining companies evaluate reclamation strategies. One of the reclamation strategies involves the use of wetlands constructed with differing amounts of OSPM and organic amendments such as peat. Currently, numerous wetlands, both natural and constructed, are present on oil sands leases. To determine the sustainability of these wetlands for reclamation, the assimilation and flow of carbon and nitrogen within the systems need to be defined. Stable isotope analysis can enhance this understanding. To effectively use stable isotopes in the field, there is the need to determine the changes in stable isotope values occurring from the microbial degradation of organic components such as NAs which contribute a significant portion to the dissolved organic carbon (DOC) in reclamation sites. This study examined the microbial degradation of commercial and oil sands derived NAs by oil sands derived microbial cultures. Changes in stable isotopes values in the biomass (δ13C, δ15N), DOC and dissolved inorganic carbon (DIC) (δ13C) arising from degradation of the DOC were tracked in both static and semi-continuous tests. Utilization of commercial and oil sands derived NAs resulted in minimal change of the DOC stable isotope values. The biomass was 13C enriched for both the commercial (0.3 to 2.9 per mil (‰)) and oil sands derived NAs (3.7 to 8.5 ‰) relative to the DOC stable isotope values. DIC stable isotope values showed higher variability (-5 to +5.5 ‰). The semi-continuous tests showed biomass that was 15N enriched (3.8 to 8.4 ‰) with the assimilation of ammonium. Isotope trends established in the laboratory study provide further understanding into assimilation of carbon and nitrogen compounds in the field. DOC and DIC concentration and carbon stable isotope values were determined for water sampled from 13 oil sands aquatic reclamation sites varying in age, construction and organic material. Both DOC and DIC concentrations were elevated in OSPM affected sites, by an average of 40 mg/L for DOC and 83 mg/L for DIC concentrations. DOC concentrations were also elevated by approximately 10 mg/L at high organic sites. δ13C DOC values were slightly 13C enriched in young sites: 0.6 ‰ compared to δ13C DOC values at the mature sites. Also, from June to July 13C enrichment (0.3 to 1.9 ‰) of the DOC for all sites was seen. Corresponding with the enrichment seen in the DOC, 13C depletion (-8.8 to -0.3 ‰) of the DIC was seen for most sites from June to July. The trends seen from June to July may be a result of the release of readily degradable organics from the spring thaw stimulating the microbial community. The baseline values determined for DOC and DIC may assist future field food web studies.

Page generated in 0.0968 seconds