• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Purification and Characterization of Stagonospora nodorum Toxins and Mapping of Toxin Insensitivity

Bajracharya, Pratisara 13 February 2015 (has links)
Stagonospora nodorum is a pathogenic fungus of wheat causing Stagonospora nodorum blotch disease, an important disease in western Canada. S. nodorum produces a multitude of host selective toxins (HSTs), which when recognized by corresponding sensitivity gene in wheat results in a compatible interaction. In this study, novel HST-host sensitivity gene interactions were investigated. Two different putative HSTs were identified. SnTox3 was likely one of the HSTs present in S. nodorum isolate Swift Current culture filtrate as the chromosomal location of the compatible sensitivity gene corresponded to that of Snn3 locus. Another putative HST interacting with Tsn1 or a tightly linked sensitivity gene was identified from S. nodorum isolate Langham. SNOG_15679, a candidate gene for production of this putative HST was heterologously expressed in Pichia pastoris which caused chlorosis on a sensitive host. Additional tests will be required to confirm the bioactivity of putative novel HST(s) produced by isolate Langham. / May 2015
2

Genotypic characterization and fungicide resistance monitoring for Virginia populations of Parastagonospora nodorum in wheat

Kaur, Navjot 28 June 2021 (has links)
Stagonospora nodorum blotch (SNB), is a major foliar disease of wheat in the mid-Atlantic U.S., is caused by the necrotrophic fungus Parastagonospora nodorum. SNB is managed using cultural practices, resistant varieties, and foliar fungicides. There are increasing trends of severity and incidence of SNB in Virginia and the surrounding mid-Atlantic region, but it is not known if changes in the pathogen population are contributing to this trend. The overall goal of this research was to 1) determine the occurrence of quinone outside inhibitor (QoI) resistance in Virginia populations of P. nodorum infecting wheat, 2) quantify the distribution of G143A mutations conferring fungicide resistance in Virginia populations of P. nodorum, and 3) characterize genetic diversity of P. nodorum populations in Virginia and assess influences of cultivars and environments on population structure and SNB severity. For Objective 1, QoI resistant isolates of P. nodorum were identified from Virginia wheat fields, and this was the first report of QoI resistant P. nodorum in the United States. The G143A substitution in the cytochrome b gene of P. nodorum was associated with reduced QoI sensitivity, and in Objective 2, a state-wide, two-year survey of P. nodorum populations in Virginia determined that the G143A mutation was widespread in the state and among sampled fields the frequency ranged from 5-32% (mean = 19%). For Objective 3, P. nodorum was isolated from five different wheat cultivars across seven locations over two years in Virginia. SNB severity varied by cultivar but greater differences in disease severity were observed among locations and years suggesting environment plays an important role in SNB development. Among the necrotrophic effector (NE) genes examined, SnTox1 was predominant followed by SnTox3, and frequencies of NE genes did not vary by cultivar or location. P. nodorum populations in Virginia had high genetic diversity, but there was no genetic subdivision among locations or wheat cultivars from which individuals were isolated. Results also indicated that the P. nodorum population in Virginia undergoes a mixed mode of reproduction, but sexual reproduction made the greatest contribution to population structure. Overall, this work provides insights into the population biology of P. nodorum in Virginia and information on variability in fungicide sensitivity and cultivar susceptibility to SNB that has implications for the current and future efficacy of fungicides and host resistance for management of SNB. / Doctor of Philosophy / Wheat (Triticum aestivum L.) is one of the major cereal crops grown worldwide for food, feed, and other products. However, yields of this crop are often limited by fungal diseases including Stagonospora nodorum blotch (SNB) caused by Parastagonospora nodorum. Increasing trends of severity and incidence of SNB may be due to reduced sensitivity of P. nodorum to fungicides or increased virulence of P. nodorum populations on commonly grown cultivars. Fungicides such as quinone outside inhibitors (QoIs) are one of the major classes of fungicides used for disease control and G143A substitution is the most common point mutation associated with complete resistance to QoIs. Therefore, the overall goal of this research was to better understand genotypic and phenotypic variation in Virginia populations of P. nodorum in the context of fungicide sensitivity and susceptibility of wheat cultivars to SNB. The specific objectives were to 1) determine the occurrence of quinone outside inhibitor (QoI) fungicide resistance in Virginia populations of P. nodorum infecting wheat, 2) quantify the distribution of G143A mutations conferring QoI fungicide resistance in Virginia populations of P. nodorum, and 3) characterize genetic diversity of P. nodorum populations in Virginia and assess influences of cultivars and environments on population structure and SNB severity. Results from this research indicate that QoI fungicide resistance occurs in Virginia populations of P. nodorum due to a target site mutation (G143A substitution in the cytochrome b gene), and this mutation is widespread and relatively common in Virginia wheat fields. Based on a multi-year multilocation study, P. nodorum populations were genetically diverse, but there was no genetic subdivision among locations or wheat cultivars. SNB severity varied by location and cultivar, but disease severity was greatest at site-years with moderate springtime temperatures and high rainfall. Overall, this work contributes to a better understanding of P. nodorum populations including the current efficacy of fungicides and host resistance for management of SNB in the region.

Page generated in 0.0659 seconds