• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HIP MUSCLE STRENGTH AND PELVIC OBLIQUITY IN COLLEGIATE FEMALES DURING WALKING AND STAIR DESCENT TASKS

Rodriguez, Kelly 01 January 2009 (has links)
The goals of the pelvis include maintaining the center of mass of the body, assisting in foot clearance and absorb forces from the lower extremities using muscles and ligaments to stabilize the joint. A better understanding of the influence of muscle strength on controlling pelvic obliquity in a healthy population will help in understanding low back pain and overuse lower extremity injuries. Thirteen females (22 ±2 yrs) participated in isokinetic strength testing of the hip abductors, adductors, internal rotators and external rotators on a Biodex dynamometer. The subjects also underwent gait analysis during self selected pace walking and stair descent. For each muscle group subjects were divided into weaker and stronger groups based on the mean. Independent t-test revealed a significantly greater amount of pelvic obliquity in the stronger group for abductors, adductors, and internal rotators during stair descent. Subjects may be compensating for more pelvic obliquity with less movement of the hip, knee and ankle. During walking weaker external rotators was the only muscle group that significantly increased pelvic obliquity. Our study supports the finding of other studies that the external rotators contribute to pelvic stabilization during walking (Powers, 2003).
2

THE BIOMECHANICAL IMPACT OF WEIGHT ON THE LOWER EXTREMITY

Ransom, Amanda Lee 01 January 2018 (has links)
Background: Obesity is a chronic disease characterized by a body mass index (BM1) of ≥ 30 kg/m2 which negatively impacts the musculoskeletal system and has been found to be a major contributing factor to obesity-induced biomechanical alterations during activities of daily living (ADLs). A certain level of mobility is required for all populations to maintain independence and a good quality of life becomes more difficult with excess weight. Using a reduced weight-bearing activity, such as the Alter Gravity treadmill, would be beneficial in an obese population to reduce the load on the joints and potentially decrease the risk of weight bearing injury while maintaining normal gait mechanics. The purpose of this dissertation was to determine the biomechanical effects of excess weight and weight distribution on ADLs. To address this, two different weight gain models were created to simulate central (CL) and peripheral (PL) weight gain compared to an obese group (OW), and normal weight group (UL) during different activities of daily living (ADLs). The purpose of the third study was to compare lower extremity joint kinematics and muscle activation patterns between obese and normal individuals at different levels of body support (100, 75, and 50%) while walking in the AlterG treadmill. Methods: 14 normal weight (BMI: 22.4 ± 1.8 kg/m2, age: 23.4 ± 3.6 yrs) and 17 obese (BMI: 33.2 ± 2.3 kg/m2, age: 31.6 ± 8.0 years) adults participated in different ADLs (gait and descending a set of stairs). Normal weight participants were loaded with two different external loads sufficient to increase their BMI by 5 kg/m2 (~22.6% body mass). Kinematic and kinetic data were collected with 3D motion analysis. Frontal plane hip and knee angles and moments were calculated. Results: During gait, the obese group walked at a significantly slower velocity compared to UL. Step length was 8.7% longer in UL and 7.4% longer in the CL compared to the OW. PL more closely mirrored the OW group in step length, flexion moment and extension moment and the CL more closely mirrored the obese group in sagittal plane knee and hip excursion, and peak hip flexion moment and extension moment during gait During the transition from descending stair walking to level gait, it was found that the PL, but not CL, decreased step length, increased step width, and increased proportion of the gait cycle spent in stance. During the transition from walking down the stairs to level gait it was found that CL and PL affect temporal spatial variables differently. PL also reduced peak hip adduction angle, increased peak hip flexion moment, decreased peak hip extension, decreased sagittal plane hip excursion, and decreased frontal plane hip excursion. Conversely, CL reduced peak hip flexion moment and trended to reduce peak hip extension moment. To determine the effects of reduced body mass per se on improved biomechanics, we needed a model that would prevent associated changes in segmental volume. Therefore, using an AlterG treadmill facilitated this method. At 100 % BW support, mean ST and VM EMG activity were significantly higher in the obese compared to the normal weight groups. There were also differences found at 75 % BW support in ST in the obese being greater than the normal. Conclusions: Combined, the overall results of this dissertation suggest that weight gain is able to be modeled but is variable and task specific. The CL has proven to be the weight gain model that which elicits a better biomechanical obese response when normal weight individuals are loaded. Further work is needed to understand how to truly mimic obesity with an external load.
3

Kinematics and Kinetics of Total Hip Arthroplasty Patients during Gait and Stair Climbing: A Comparison of the Anterior and Lateral Surgical Approaches

Varin, Daniel 27 January 2011 (has links)
New surgical approaches for total hip arthroplasty (THA) are being developed to reduce muscle damage sustained during surgery, in the hope to allow better muscle functioning afterwards. The goal of this study was to compare the muscle sparing anterior (ANT) approach to a traditional lateral (LAT) approach with three-dimensional motion analysis. Kinematics and kinetics were obtained with an infrared camera system and force plates. It was hypothesized that (1) the ANT group would have closer to normal range of motion, moments and powers, compared to the LAT group, and that (2) the ANT group would have higher peak hip abduction moment than the LAT group. Forty patients undergoing unilateral THA for osteoarthritis between the ages of 50 and 75 (20 ANT, 20 LAT) were asked to perform three trials of walking, stair ascent and stair descent. Patients were assessed between six to twelve months postoperatively. Twenty age- and weight-matched control participants (CON) provided normative data. Results indicated that both THA groups had gait anomalies compared to the CON group. Both THA groups had reduced hip abduction moment during walking (CON vs. ANT: p<0.001; CON vs. LAT: p=0.011), and the ANT group had a significantly lower hip abduction moment compared to the LAT group (p=0.008). Similar results were observed during stair descent, where the ANT group had reduced peak hip abduction moment compared to the CON group (p<0.001) and the LAT group (p=0.014). This indicates that the anterior approach did not allow better gait and stair climbing ability after THA. It is therefore thought that other variables, such as preoperative gait adaptations, trauma from the surgery, or postoperative protection mechanisms to avoid loading the prosthetic hip, are factors that might be more important than surgical approach in determining the mechanics of THA patients after surgery.
4

Kinematics and Kinetics of Total Hip Arthroplasty Patients during Gait and Stair Climbing: A Comparison of the Anterior and Lateral Surgical Approaches

Varin, Daniel 27 January 2011 (has links)
New surgical approaches for total hip arthroplasty (THA) are being developed to reduce muscle damage sustained during surgery, in the hope to allow better muscle functioning afterwards. The goal of this study was to compare the muscle sparing anterior (ANT) approach to a traditional lateral (LAT) approach with three-dimensional motion analysis. Kinematics and kinetics were obtained with an infrared camera system and force plates. It was hypothesized that (1) the ANT group would have closer to normal range of motion, moments and powers, compared to the LAT group, and that (2) the ANT group would have higher peak hip abduction moment than the LAT group. Forty patients undergoing unilateral THA for osteoarthritis between the ages of 50 and 75 (20 ANT, 20 LAT) were asked to perform three trials of walking, stair ascent and stair descent. Patients were assessed between six to twelve months postoperatively. Twenty age- and weight-matched control participants (CON) provided normative data. Results indicated that both THA groups had gait anomalies compared to the CON group. Both THA groups had reduced hip abduction moment during walking (CON vs. ANT: p<0.001; CON vs. LAT: p=0.011), and the ANT group had a significantly lower hip abduction moment compared to the LAT group (p=0.008). Similar results were observed during stair descent, where the ANT group had reduced peak hip abduction moment compared to the CON group (p<0.001) and the LAT group (p=0.014). This indicates that the anterior approach did not allow better gait and stair climbing ability after THA. It is therefore thought that other variables, such as preoperative gait adaptations, trauma from the surgery, or postoperative protection mechanisms to avoid loading the prosthetic hip, are factors that might be more important than surgical approach in determining the mechanics of THA patients after surgery.
5

Kinematics and Kinetics of Total Hip Arthroplasty Patients during Gait and Stair Climbing: A Comparison of the Anterior and Lateral Surgical Approaches

Varin, Daniel 27 January 2011 (has links)
New surgical approaches for total hip arthroplasty (THA) are being developed to reduce muscle damage sustained during surgery, in the hope to allow better muscle functioning afterwards. The goal of this study was to compare the muscle sparing anterior (ANT) approach to a traditional lateral (LAT) approach with three-dimensional motion analysis. Kinematics and kinetics were obtained with an infrared camera system and force plates. It was hypothesized that (1) the ANT group would have closer to normal range of motion, moments and powers, compared to the LAT group, and that (2) the ANT group would have higher peak hip abduction moment than the LAT group. Forty patients undergoing unilateral THA for osteoarthritis between the ages of 50 and 75 (20 ANT, 20 LAT) were asked to perform three trials of walking, stair ascent and stair descent. Patients were assessed between six to twelve months postoperatively. Twenty age- and weight-matched control participants (CON) provided normative data. Results indicated that both THA groups had gait anomalies compared to the CON group. Both THA groups had reduced hip abduction moment during walking (CON vs. ANT: p<0.001; CON vs. LAT: p=0.011), and the ANT group had a significantly lower hip abduction moment compared to the LAT group (p=0.008). Similar results were observed during stair descent, where the ANT group had reduced peak hip abduction moment compared to the CON group (p<0.001) and the LAT group (p=0.014). This indicates that the anterior approach did not allow better gait and stair climbing ability after THA. It is therefore thought that other variables, such as preoperative gait adaptations, trauma from the surgery, or postoperative protection mechanisms to avoid loading the prosthetic hip, are factors that might be more important than surgical approach in determining the mechanics of THA patients after surgery.
6

Kinematics and Kinetics of Total Hip Arthroplasty Patients during Gait and Stair Climbing: A Comparison of the Anterior and Lateral Surgical Approaches

Varin, Daniel January 2011 (has links)
New surgical approaches for total hip arthroplasty (THA) are being developed to reduce muscle damage sustained during surgery, in the hope to allow better muscle functioning afterwards. The goal of this study was to compare the muscle sparing anterior (ANT) approach to a traditional lateral (LAT) approach with three-dimensional motion analysis. Kinematics and kinetics were obtained with an infrared camera system and force plates. It was hypothesized that (1) the ANT group would have closer to normal range of motion, moments and powers, compared to the LAT group, and that (2) the ANT group would have higher peak hip abduction moment than the LAT group. Forty patients undergoing unilateral THA for osteoarthritis between the ages of 50 and 75 (20 ANT, 20 LAT) were asked to perform three trials of walking, stair ascent and stair descent. Patients were assessed between six to twelve months postoperatively. Twenty age- and weight-matched control participants (CON) provided normative data. Results indicated that both THA groups had gait anomalies compared to the CON group. Both THA groups had reduced hip abduction moment during walking (CON vs. ANT: p<0.001; CON vs. LAT: p=0.011), and the ANT group had a significantly lower hip abduction moment compared to the LAT group (p=0.008). Similar results were observed during stair descent, where the ANT group had reduced peak hip abduction moment compared to the CON group (p<0.001) and the LAT group (p=0.014). This indicates that the anterior approach did not allow better gait and stair climbing ability after THA. It is therefore thought that other variables, such as preoperative gait adaptations, trauma from the surgery, or postoperative protection mechanisms to avoid loading the prosthetic hip, are factors that might be more important than surgical approach in determining the mechanics of THA patients after surgery.
7

Stair-specific algorithms for identification of touch-down and foot-off when descending or ascending a non-instrumented staircase.

Foster, Richard J., De Asha, Alan R., Reeves, N.D., Maganaris, C.N., Buckley, John 05 November 2013 (has links)
Yes / The present study introduces four event detection algorithms for defining touch-down and foot-off during stair descent and stair ascent using segmental kinematics. For stair descent, vertical velocity minima of the whole body center-of-mass was used to define touch-down, and foot-off was defined as the instant of trail limb peak knee flexion. For stair ascent, vertical velocity local minima of the lead-limb toe was used to define touch-down, and foot-off was defined as the local maxima in vertical displacement between the toe and pelvis. The performance of these algorithms was determined as the agreement in timings of kinematically derived events to those defined kinetically (ground reaction forces). Data were recorded while 17 young and 15 older adults completed stair descent and ascent trials over a four-step instrumented staircase. Trials were repeated for three stair riser height conditions (85 mm, 170 mm, and 255 mm). Kinematically derived touch-down and foot-off events showed good agreement (small 95% limits of agreement) with kinetically derived events for both young and older adults, across all riser heights, and for both ascent and descent. In addition, agreement metrics were better than those returned using existing kinematically derived event detection algorithms developed for overground gait. These results indicate that touch-down and foot-off during stair ascent and descent of non-instrumented staircases can be determined with acceptable precision using segmental kinematic data.
8

Analysis of lower limb movement to determine the effect of manipulating the appearance of stairs to improve safety: a linked series of laboratory-based, repeated measures studies

Elliott, David, Foster, Richard J., Whitaker, David J., Scally, Andy J., Buckley, John 28 April 2016 (has links)
Yes / Falls on stairs are a common and dangerous problem for older people. This series of studies evaluated whether or not selected changes to the appearance of stairs could make them safer for older people to negotiate. Objectives: To determine the effect of (1) a step edge highlighter and its position and (2) an optimised horizontal–vertical (H–V) visual illusion placed on a step riser on gait safety during stair descent and ascent. Design: A series of studies using a repeated measures, laboratory-based design, investigating gait control and safety in independently mobile older people. Setting: The University of Bradford Vision and Mobility Laboratory. Participants: Fit and healthy older people aged 60 years of age or more, independently mobile, reasonably active and with normal healthy eyes and corrected vision. Interventions: A step edge highlighter in a variety of offsets from the stair edge and an optimised H–V visual illusion placed on the stair riser. The H–V illusion was provided on a staircase by horizontal step edge highlighters on the tread edges and vertical stripes on the step risers. Main outcome measures: Gait parameters that are important for safe stepping in ascent and descent, particularly toe clearance during stair ascent and heel clearance during stair descent. Results: The step edge highlighter increased the precision of heel clearance during stepping and its positioning relative to the tread edge determined the extent of heel clearance over the tread edge. Positioning the highlighter away from the tread edge, as is not uncommonly provided by friction strips, decreased heel clearance significantly and led to greater heel scuffs. Although psychophysics experiments suggested that higher spatial frequencies of the H–V illusion might provide greater toe clearance on stair ascent, gait trials showed similar increased toe clearances for all spatial frequencies. When a 12 cycle per step spatial frequency H–V illusion was used, toe clearance increases of approximately 1 cm (17.5%) occurred without any accompanying changes in other important gait parameters or stability measures. Conclusions: High-contrast tread edge highlighters present on steps and stairs and positioned flush with the edge of the tread or as near to this as possible should improve stair descent safety in older people. A H–V illusion positioned on the riser of a raised surface/walkway (e.g. kerbs) and/or the top and/or bottom of a stairway is likely to increase foot clearance over the associated step/stair edge, and appears not to lead to any decrement in postural stability. Thus, their use is likely to reduce trip risk and hence improve stair ascent safety. The effect of the step and stair modifications should be assessed in older people with visual impairment. The only other remaining assessment that could be made would be to assess fall prevalence on steps and stairs, perhaps in public buildings, with and without these modifications. / National Institute for Health Research, Public Health Research programme. PHR programme as project number 10/3009/06

Page generated in 0.0711 seconds