• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Stand Composition on Soil Organic Carbon Stabilization and Biochemistry in Aspen and Conifer Forests of Utah

Roman Dobarco, Mercedes 01 May 2014 (has links)
Quacking aspen (Populus tremuloides Michx.) is an iconic species in western United States that offers multiple ecosystem services, including carbon sequestration. A shift in forest cover towards coniferous species due to natural succession, land management practices, or climate change may modify soil organic carbon (SOC) dynamics and CO2 emissions. The objectives of this study were to: (i) assess the effects of overstory composition on SOC storage and stability across the aspen-conifer ecotone, (ii) use Fourier transform infrared spectroscopy attenuated total reflectance (FTIR-ATR) to assess whether SOC storage is associated with preferential adsorption of certain organic molecules to the mineral surfaces, and (iii) develop models using near-infrared reflectance spectroscopy (NIRS) to predict aspen- and conifer-derived SOC concentration. Mineral soils (0 – 15 cm) were sampled in pure and mixed aspen and conifer stands in Utah and subjected to physical fractionation to characterize SOC stability (i.e., SOC protected against microbial decomposition), long term laboratory incubations (i.e., SOC decomposability), and hot water extractions (i.e., SOC solubility). Vegetation cover had no effect on SOC storage (47.0 ± 16.5 Mg C ha−1), SOC decomposability (cumulative released CO2-C of 93.2 ± 65.4 g C g−1 C), SOC solubility (9.8 ± 7.2 mg C g−1 C). Mineral-associated SOC (MoM) content was higher under aspen (31.2 ± 15.1 Mg C ha-1) than under mixed (25.7 ± 8.8 Mg C ha−1) and conifer cover (22.8 ± 9.0 Mg C ha−1), indicating that aspen favors long-term SOC storage. FTIR-ATR spectral analysis indicated that higher MoM content under aspen is not due to higher concentration of recalcitrant compounds (e.g., aliphatic and aromatic C), but rather to stabilization of simple molecules (e.g., polysaccharides) of plant or microbial origin. NIRS models performed well during calibration-validation stage (ratio of standard deviation of reference values to standard error of prediction (RPD) ≥ 2). However, model performance decreased during independent validation (RPD = 1.2 – 1.6), probably due to the influence of soil texture, mineralogy, understory vegetation, and land history on SOC spectra. Further improvement of NIRS models could provide insight on SOC dynamics under potential conifer encroachment in semiarid montane forests.

Page generated in 0.3231 seconds