• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE STRONGLY STABLE IDEALS

Stokes, Erik 01 January 2008 (has links)
Making use of algebraic and combinatorial techniques, we study two topics: the arithmetic degree of squarefree strongly stable ideals and the h-vectors of matroid complexes. For a squarefree monomial ideal, I, the arithmetic degree of I is the number of facets of the simplicial complex which has I as its Stanley-Reisner ideal. We consider the case when I is squarefree strongly stable, in which case we give an exact formula for the arithmetic degree in terms of the minimal generators of I as well as a lower bound resembling that from the Multiplicity Conjecture. Using this, we can produce an upper bound on the number of minimal generators of any Cohen-Macaulay ideals with arbitrary codimension extending Dubreil’s theorem for codimension 2. A matroid complex is a pure complex such that every restriction is again pure. It is a long-standing open problem to classify all possible h-vectors of such complexes. In the case when the complex has dimension 1 we completely resolve this question and we give some partial results for higher dimensions. We also prove the 1-dimensional case of a conjecture of Stanley that all matroid h-vectors are pure O-sequences. Finally, we completely characterize the Stanley-Reisner ideals of matroid complexes.
2

Generalizing Fröberg's Theorem on Ideals with Linear Resolutions

Connon, Emma 07 October 2013 (has links)
In 1990, Fröberg presented a combinatorial classification of the quadratic square-free monomial ideals with linear resolutions. He showed that the edge ideal of a graph has a linear resolution if and only if the complement of the graph is chordal. Since then, a generalization of Fröberg's theorem to higher dimensions has been sought in order to classify all square-free monomial ideals with linear resolutions. Such a characterization would also give a description of all square-free monomial ideals which are Cohen-Macaulay. In this thesis we explore one method of extending Fröberg's result. We generalize the idea of a chordal graph to simplicial complexes and use simplicial homology as a bridge between this combinatorial notion and the algebraic concept of a linear resolution. We are able to give a generalization of one direction of Fröberg's theorem and, in investigating the converse direction, find a necessary and sufficient combinatorial condition for a square-free monomial ideal to have a linear resolution over fields of characteristic 2.

Page generated in 0.0628 seconds