• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 15
  • 12
  • 10
  • 10
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 301
  • 301
  • 101
  • 86
  • 67
  • 59
  • 57
  • 52
  • 50
  • 48
  • 46
  • 35
  • 32
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Star formation in galaxies : from the epoch of re-ionisation to the present day

Hickey, Samantha January 2012 (has links)
In this thesis, I explore both obscured and unobscured star formation over a large fraction of cosmic time. I use the HAWK-I Y -band science verification data over GOODS-South, in conjunction with optical and infrared data to search for Lyman-break galaxies at z >∼ 6.5 (i.e. within the first billion years of the Universe). I find four possible (two robust) z′-drop candidates (z >∼ 6.5) and four possible (but no robust) Y -drop candidates (z >∼ 7). I use my results to place constraints on the luminosity function at z ∼ 6.5 and find significant evolution in the population of Lyman-break galaxies between 3 < z <∼ 6.5. I also explore obscured star formation with a population of 70μm selected galaxies over the COSMOS field. I use AAT spectroscopy in conjunction with other available spectroscopic redshifts for my sample, and photometric redshifts otherwise, to calculate the total infrared luminosity of each galaxy. Two libraries of spectral energy distributions are considered; Siebenmorgen & Krügel (2007) templates and Chary & Elbaz (2001) models. We have supplemented our data with that of Huynh et al. (2007) collected over the GOODS-North field and adapted it to directly compare with the results of this work. The far-infrared luminosity function is then determined using the 1/Vmax technique. A double power law parameterisation is found to provide the best fit to the data. The far-infrared luminosity function was fitted for all parameters and the evolution was measured out to z ∼ 1. Three different types of evolution were allowed, pure luminosity, pure density and luminosity dependent density evolution. In all cases strong positive evolution was evident with the best-fit case being pure luminosity evolution where p = 2.4+0.6 −0.7. Due to the larger volume surveyed compared to previous studies, this work provides better constraints on the bright end of the far-infrared luminosity function displaying a shallower bright end slope (α2 ∼ −1.6) than previously determined, implying a higher number density of the most luminous objects and thereby a greater contribution from these objects to the total infrared energy density. However the shallower slope determined here can be reconciled with other work if the Chary & Elbaz (2001) models are used instead of the Siebenmorgen & Krügel templates; demonstrating that spectral energy distribution model selection is a key component in determining luminosity functions at far-infrared wavelengths. The far-infrared–radio correlation (FIRC; qIR) was determined for the sample of 70μm selected star-forming galaxies using 1.4GHz radio data over the COSMOS field, and no evolution was found out to z ∼ 2. The 70μm monochromatic evolution in the FIRC was also examined (q70) and no evolution was found in this parameter with redshift.
82

Physical properties of star-forming regions across the Galaxy

Dunham, Miranda Kay 13 June 2011 (has links)
The Bolocam Galactic Plane Survey (BGPS) has surveyed the northern Galactic plane at 1.1 mm and detected 8,358 sources. The BGPS catalog is large enough to characterize the properties of massive star formation in a statistically significant way. In this dissertation, I have conducted a survey of NH₃ lines toward 771 BGPS sources located throughout the Galactic plane. The NH₃ and 1.1 mm continuum observations together have allowed for complete characterization of the physical properties of these sources. I detected the NH₃(1,1) line toward 408 BGPS sources in the inner Galaxy, allowing for determination of their kinematic distances. At distances less than roughly 1 kpc, the BGPS detects predominately cores which will form a single star or small multiple system, while at distances between 1 and 7 kpc the BGPS detects predominately clumps which will form entire stellar clusters. At distances greater than 7 kpc, the BGPS detects the large scale clouds which contain clumps and cores. I have correlated the BGPS catalog with mid-IR catalogs of massive young stellar objects (MYSOs), and found that 49% of the BGPS sources contain signs of active star formation. The masses, densities, H₂ and NH₃ column densities, gas kinetic temperatures, and NH₃ velocity dispersions are higher in BGPS sources with associated mid-IR sources. I have also studied the physical properties of the BGPS sources as a function of Galactocentric radius, R[subscript Gal]. I find that the mean radius and mass decrease with increasing R[subscript Gal] but peak within the 5 kpc molecular ring where the gas kinetic temperature reaches a minimum. The fraction of BGPS sources with associated mid-IR sources decreases by 10% within the molecular ring. I postulate that these trends can be explained by an ambient gas density which decreases with R[subscript Gal], but peaks within the molecular ring. Similarly, the NH₃ column density and abundance decrease by almost an order of magnitude from the inner to outer Galaxy. / text
83

New insights into primordial star formation

Stacy, Athena Ranice 23 January 2012 (has links)
The formation of the first stars, also known as Population III (Pop III), marked a pivotal point in the universe's evolution from relative smoothness and homogeneity to its current highly structured state. In this dissertation we study key aspects of Pop III star formation. We utilize three-dimensional cosmological simulations to follow the evolution of gas and DM from z ~100 until the first minihalo forms. Once the gas infalls toward the center of the minihalo and condenses, we implement the 'sink particle' method to represent regions that will form a star, and we follow the evolution of the metal-free, star-forming gas for many free-fall times. A disk forms around the initial Pop III star and fragments to form secondary stars with a range of masses (1 - 50 [solar mass]). This is markedly different from the previous paradigm of one single, massive star forming per minihalo. Using a ray-tracing technique, we also examine the effect of radiative feedback on protostellar growth and disk fragmentation. This feedback will not prevent the formation of secondary stars within the disk, but will reduce the final mass reached by the largest Pop III star. Measuring the angular momentum of the gas that falls onto the sink regions, we also find that the more massive Pop III stars accrete sufficient angular momentum to rotate at nearly break-up speeds, and can potentially end their lives as collapsar gamma-ray bursts or hypernovae. We furthermore numerically examine the recently discovered relative streaming motions between dark matter and baryons, originating from the era of recombination. Relative streaming will slightly delay the redshift at which Pop III stars first form, but will otherwise have little impact on Pop III star formation and the history of reionization. We finally evaluate the possible effect of a cosmic ray (CR) background generated by the supernova deaths of massive Pop III stars. A sufficiently large CR background could indirectly enhance the H₂ cooling within the affected minihalos. The resulting lower temperatures would lead to a reduced characteristic stellar mass (~ 10 [solar mass]), providing another possible pathway to form low-mass Pop III stars. / text
84

An investigation of the physical parameters of young stellar objects

Deen, Casey Patrick 26 January 2012 (has links)
Studies of the temporal evolution of young stars and their associated properties rely upon the ability of astronomers to determine ages and masses of objects in different evolutionary states. The best method for determining the age and mass of a young stellar object is to place the object on the Hertzsprung-Russell (HR) diagram and to compare to theoretical evolutionary tracks. Accurate ages allow the investigation of the temporal evolution of properties associated with stellar youth (accretion rates, X-ray activity, circumstellar excess, etc...). One property intimately linked with stellar youth is the presence (or absence) of an optically thick primordial circumstellar disk. Objects in "young" star forming regions are more likely to show evidence for a disk than objects in "older" clusters. Within a single cluster, the picture is not as clear. There exist objects in very young clusters (~1 Myr) which show no evidence for circumstellar disks, and there exist objects in very old clusters (~10 Myr), which show evidence for robust disks, suggesting a variable other than stellar age is driving the evolution of the disks. To investigate whether these outliers are due to age spreads, initial conditions, or simply appear anomalous due to erroneous age determinations, we must determine better placements in the HR diagram by carefully transforming observable quantities (spectral type and apparent magnitude) into the quantities necessary for comparison evolutionary models (effective temperature and luminosity). In the Ophiuchus star forming region, I investigate whether or not objects with disks are younger than disk-less objects. I find no difference in the ages of the two populations, but the systematic and random uncertainties are large enough to mask all but the largest age differences. In the hope of better determining the physical parameters of young stellar objects, I embark on a spectral synthesis campaign to produce comparison synthetic spectra which account for the effects of magnetic fields. This requires the modification of the MOOG spectral synthesis program to handle the full Stokes vector treatment for polarized radiation through a magnetized medium. I create a grid of synthetic spectra covering ranges in effective temperature, surface gravity, and average magnetic field strength relevant for studies of young stellar objects, and develop a Chi-squared minimization routine to determine the best fit synthetic spectrum for a given observed spectrum at an arbitrary resolving power. This grid of synthetic spectra will be an invaluable complement to future near infrared, large band-pass, high-resolving power spectrographs (i.e. IGRINS). In addition to these observational and theoretical attempts to reduce systematic errors, I also helped to develop a suite of silicon and KRS-5 grisms for use in the FORCAST instrument, a mid infrared camera on the SOFIA telescope. These grisms will afford the imaging instrument a mid infrared spectroscopic capability at wavelengths normally inaccessible from the ground. I also report on my work to help write FG Widget, the quick-look reduction software package developed to support grism observations. / text
85

The Effects of Dense Cluster Environments on Galaxies and Intracluster Dust

Bai, Lei January 2007 (has links)
Dense cluster environment influences the properties of galaxies and their evolution. In order to understand this environmental effect and how it evolves with time, we study the infrared (IR) properties of galaxies in three rich clusters. The IR luminosities provide us with extinction-free measurements of the star formation rates (SFRs) of these cluster galaxies. We find a strong evolution in the IR luminosity function (LF) of two z ∼ 0:8 clusters when compared to two local clusters. The evolution rate of the IR LF found in these clusters is consistent with the evolution in field IR LFs. The similar evolution rate found in very different environments favors some internal mechanism, e.g., the gradual consumption of the gas fuel in galaxies, as being responsible for much of the star formation evolution. The mass-normalized integrated SFRs within 0.5R₂₀₀ of these clusters also shows an evolution trend, ∝ (1 + z)5. But this evolution has large scatter and may be affected by the mass selection effect of the sample. In the dense cluster core regions (r < 0.3 Mpc), we find evidence for enhanced SFR suppression. A substantial fraction of members in MS 1054-03 (z ∼ 0.8) are still forming stars actively. This cannot be explained by the scenario where the cluster is only passively accreting star-forming galaxies from the surrounding field, after which their star formation is quenched quickly. We also study the extended IR emission from the intracluster dust (ICD) in A2029. We only find weak signals at 24 and 70 μm and obtain upper limits for the ICD emission.
86

Galaxy Transformations in the Last 5 Billion Years

Lu, Ting January 2010 (has links)
It has become clear that the global star formation rate in the Universe has been decreasing since at least z~1, and blue, star-forming galaxies are transformed into red, passive galaxies through one or more processes. The origin of this decline and transformation remains unclear. The role environment plays in all this is especially uncertain. Despite the observed domination of a passive population in the cores of clusters, in contrast to the more actively star-forming field population, whether or not, and how environment affects the properties of galaxies when they fall into clusters is an unsettled question. In this thesis, we look into these issues by examining both the passive and star-forming galaxies, from the cores out to the infall regions, in a large sample of clusters at 0.15<z<0.36 we detected from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We find that in the cores of clusters, the red-sequence galaxies are a mixture of two populations, indicated by the inflexion in their luminosity function. There is no strong evolution in the shape of the red-sequence between z~0.4 and z~0.2; however, from z~0.2 to today, there is a rapid increase in the number of faint galaxies on the red-sequence relative to the bright ones, suggesting a rapid quenching of the faint galaxies in cluster cores within the last few billion years. At z~0.2, we find that the red fraction (star-forming fraction), at all stellar mass explored (9.0<log10(M*/M_solar)<11.5), shows no dependence on the distance from cluster centres, in the range 3<r<7Mpc; but within the inner 3 Mpc, we see a clear increase (decrease) in the red fraction (star-forming fraction). Also, for the lowest stellar mass galaxies, their red fraction has increased by a factor of 2 from z~0.3 to z~0.2 (over 1 Gyr), and yet we do not detect any difference between the star formation properties of the star-forming galaxies in clusters at all radii and that in the field. This suggests that for the low mass galaxies, it is likely that a mechanism that truncates star formation rapidly (within 1 Gyr) is at work. In the outskirts of the clusters, despite the low density contrast with the field, the red fraction is still higher than that in the field, suggesting that those galaxies have had their star formation quenched relative to the field population, supporting the pre-processing scenario.
87

Probing the Environmental Dependence of Star Formation in Satellite Galaxies using Orbital Kinematics

Oman, Kyle Andrew January 2013 (has links)
(Abridged) Physical processes regulating star formation in satellite galaxies represent an area of ongoing research, but the projected nature of observed coordinates makes separating different populations of satellites (with different processes at work) difficult. The present-day phase space coordinates of a satellite galaxy carry information about its orbital history, which can then be compared to its star formation history (SFH). This is expected to reveal both a trigger time and timescale for environmental quenching. Finally, this can be related back to the physical process(es) regulating star formation in high density environments. We use merger trees from the MultiDark Run 1 N-body simulation to compile a catalogue of satellite orbits in cluster environments. We parameterize the orbital history by the time since crossing within 2.5 virial radii of the cluster centre and use our catalogue to estimate the probability density over a range of this parameter given a set of projected phase space coordinates. We show that different populations of satellite haloes occupy (semi-)distinct regions of (projected) phase space. We generalize this result by producing a probability distribution function (PDF) of possible infall times at every point in projected phase space. We apply our method to determining the infall time PDFs of a large sample of observed cluster satellite candidates from the Sloan Digital Sky Survey. We use galaxy colour as a proxy for SFH and model the distribution of satellite galaxy colours as two gaussian populations. We derive a Markov chain Monte-Carlo method to obtain the colour distribution as a function of the time since infall into the cluster environment. Our implementation of this method is still being tuned, but we use a second simpler (but much cruder) method to obtain an estimate of the evolution of the colour distribution. Our results are suggestive of a quenching process that begins within perhaps ±1 Gyr of virial radius crossing and which slows after pericentric passage. We stress that results obtained with this second method come with important caveats.
88

MAGNETIC FIELDS IN THE GALAXY

Mayo, Elizabeth Ann 01 January 2008 (has links)
The object of this dissertation is to provide an observational study of the effects of interstellar magnetic fields on star-formation regions. This is part of a long-standing research project that uses the techniques of radio astronomy to measure magnetic field strengths in the interstellar medium of our galaxy. Interstellar magnetic fields are believed to play a crucial role in the star-formation process therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. The regions observed include the giant molecular clouds and star-forming regions of Cygnus X and NGC 6334. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (based on studies by Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them.
89

Deriving Dust Properties in Star Forming Clumps: a Look Across the Perseus Molecular Cloud with Herschel and SCUBA-2

Chen, Michael Chun-Yuan 22 April 2015 (has links)
Herschel and JCMT surveys of nearby star-forming regions have provided excellent images of cold dust emission across several wavelengths with unprecedented dynamic range and resolutions. Here we present spectral emissivity index and temperature maps of dust in the star-forming clumps of the Perseus molecular cloud determined from fitting SEDs to the combined Herschel and JCMT observations in the 160 μm, 250 μm, 350 μm, 500 μm, and 850 μm bands, employing the technique developed by Sadavoy et al. (2013). In NGC1333, the most complex and active star-forming clump in Perseus, we demonstrate that CO line contamination in the JCMT SCUBA-2 850 μm band is typically insignificant. The derived spectral emissivity index, β, and dust temperature, T, ranges between 0.8 - 3.0 and 7 - 50 K, respectively. Throughout Perseus, we see indications of heating from B stars and embedded protostars, and smooth β variations on the smaller scales. The distribution of β values seen in each clump differs from one clump to another, and is in general different from the diffuse ISM values (i.e., ~2), suggesting that dust grain evolution is significant in star-forming clumps. We also found coincidences between low β regions and local temperature peaks as well as locations of outflows, which may provide hints to the origins of these low β value grains, and dust grain evolution in star-forming clumps in general. / Graduate / mcychen@uvic.ca
90

Spectral energy distribution fitting of the bulge and disk components of interacting galaxies

Palmer, Michael J. D. 23 August 2012 (has links)
We perform spectral energy distribution fitting to the total integrated light, bulge and disk components of ≈ 650,000 spectroscopically selected galaxies from the sloan digital sky survey data release 7. Using 4-band photometry (u, g, r, i) we derive physical properties for these components with particular emphasis placed on the star formation rates (SFR) and stellar masses. Using the total integrated fits as an indicator of the goodness of fit, we show that reliable estimates of the SFR can be recovered using a specific SFR (sSFR) cut of log(sSFR /yr) ≥ −10.45. We construct a close pairs sample and match isolated controls based on stellar mass, z and local density for galaxies that pass the sSFR cut. We develop a method to cross correlate the pair galaxies’ star formation rate posterior probability distribution functions (SFR PDFs) with the control SFR PDFs as a function of the pair galaxies projected separation, rp. We show that the SFR of the close pair galaxies is enhanced relative to the control sample. The SFR enhancement is at a level of ≈ 0.25 dex above that of the control at the closest separations and declines to a plateau at ≈ 0.15 dex for separations of 30 < rp < 60 kpc/h. Between 60 < rp < 80 kpc/h there appears to be a slight increase in the enhancement to a level ≈ 0.25 dex above the control. It is suggested that we observe this increase, where other studies have failed to, based on the updated photometry provided by Simard et al. (2011). From our total pair sample we also select a subsample of galaxies that are classified as active galactic nuclei (AGN). We note that at close separations the pair AGN galaxies have enhanced SFRs relative to their matched controls. The SFR enhancement is largest at the smallest separations, reaching a level of ≈ 0.3 dex above the control. The SFR enhancement for the AGN pairs becomes consistent with their controls at projected separations of 20 < rp < 80 kpc/h. We construct a bulge and disk pair sample that are required to pass the sSFR cut and match control bulges and disks, respectively, that also pass the sSFR cut. We cross correlate the bulge and disk pairs with their respective controls. We measure significant SFR enhancement in the bulge component of the interacting pairs. The SFR enhancement is highest at small separations, ≈ 0.4 dex, and steadily declines to ≈ 0.1 dex before turning around beyond rp > 50 kpc/h to again reach a level ≈ 0.4 dex above the control bulges. The disk SFR enhancement is relatively flat beyond rp > 30 kpc/h to a level ≈ 0.1 dex above the control and largely consistent with the control at close separations. The bulge and disk results suggest that the majority of induced star formation during an interaction is occurring in the bulge component, but that there is still slight SFR enhancement in the disk. We suggest that the upturn in the total and bulge SFR enhancement could potentially be caused by a delay between the interaction of the galaxy pairs and the onset of induced star formation. / Graduate

Page generated in 0.1161 seconds