Spelling suggestions: "subject:"starbursts."" "subject:"starburst.""
1 |
A multiwavelength study of the local group starburst galaxy IC 10 /Zucker, Daniel B. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (p. 165-170).
|
2 |
Age dating of interaction-induced starbursts in QSO host galaxies and companionsCanalizo, Edith Gabriela. January 2000 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2000. / Includes bibliographical references. Also available on microfiche.
|
3 |
X-ray observations of the starburst galaxy IC 342Mak, Suet-ying., 麥雪瑩. January 2008 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
|
4 |
X-ray observations of the starburst galaxy IC 342Mak, Suet-ying. January 2008 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Includes bibliographical references (leaf 131-143) Also available in print.
|
5 |
On the Prevalence of Starbursts in Dwarf GalaxiesLee, Janice Christine January 2006 (has links)
An outstanding question in galaxy evolution research is whether the star formation histories of low mass systems are dominated by global starbursts or modes that are more quiescent and continuous. In this thesis, we quantify the prevalence of global starbursts in dwarf galaxies at the present epoch, and attempt to infer their characteristic durations, frequencies and amplitudes in the past. Our approach is to directly tally the number of bursting dwarfs in a complete local sample, and to compute the fraction of star formation that is concentrated in these systems. The resulting starburst number and mass fractions are then combined with B-V colors from the literature, the H-alpha EWs presented here, and stellar evolutionary synthesis models in order to place constraints on the average starburst duty cycle. The primary dataset used has been put together by the 11 Mpc H-alpha UV Galaxy Survey, who have collected data on an approximately volume-limited, statistical sample of star-forming galaxies within 11 Mpc of the Milky Way.Our main observational results, along with the accumulation of star formation studies of dwarf galaxies over the past three decades, paint a consistent picture where systems that are currently experiencing a massive global burst are just the 6% +/- 3% tip of a low-mass galaxy iceberg. Moreover, bursts are responsible for 22% +/- 10% of the total star formation in the overall dwarf galaxy population, so the majority of stars in low-mass systems do not appear to be formed in this mode today.Over their lifetimes, however, a greater fraction of the stellar mass of a dwarf may be formed in the burst mode. Synthesis modeling suggests that bursts cycles appear to be necessary in order to simultaneously explain the present-day observed blue B-V colors and modest H-alpha EWs of TYPICAL, CURRENTLY NON-BURSTING dwarf irregulars, unless non-standard assumptions concerning the IMF and the escape fractions of Lyman continuum photons are made. The starburst cycle that we converge upon involves burst durations of 50-100 Myrs, cycle frequencies of 1 to 3 per Gyr, and elevated burst SFRs that are a factor of 6-10 higher than the rate in the quiescent state. Galaxies characterized by such a SFH would spend ~10% of their lives in the burst state, and form ~50% of their stellar mass during this time.
|
6 |
Near-infrared [Fe II] emission in starburst galaxiesLabrie, Kathleen 16 November 2018 (has links)
We used the near-infrared [Fe II] emission line signature to detect supernova remnants (SNRs) in the nearby starburst galaxies NGC 1569, NGC 3738 and NGC 5253. The near-infrared narrow-band imaging program has led to the detection of 10 SNR candidates in NGC 1569, 7 in NGC 5253, and none in NGC 3738. A spatially extended component to the [Fe II] line emission is observed in NGC 1569 and NGC 5253. This component dominates the integrated [Fe II] luminosity in both galaxies, the compact sources accounting for 14% and 7% of the total [Fe II] luminosity of NGC 1569 and NGC 5253, respectively.
Despite the starburst environment, the [Fe II] luminosity of the individual SNRs is two orders of magnitude lower than the luminosities observed for SNRs in M82. We find that the density and the structure of the interstellar medium is a more important factor than the starburst nature of a galaxy in determining the average [Fe II] luminosity of a SNR. We caution against the blind usage of supernova rate vs. [Fe II] luminosity relations, which are most often calibrated with the average luminosity of the remnants in M82.
We suggest that a significant fraction of the ISM in NGC 1569 and NGC 5253 is under the influence of SNRs. This does not appear to be the case in M82, where the impact of the SNRs is limited to high density knots. Also, we find evidence for an [Fe II]-emitting lifetime as long as 105 yrs, which contrasts with the 104 yrs derived from SNRs in M82-like galaxies.
We find that the [Fe II] morphology, and the integrated luminosity observed in our sample galaxies, can be reproduced from a [Fe II]-emitting SNR population, as long as the pre-shock density is kept as low as 1 cm −3. Higher pre-shock density models are strongly rejected. We find a supernova rate of 0.006 SN/yr for NGC 1569 and 0.005 SN/yr for NGC 5253. / Graduate
|
7 |
Low ionization nuclear emission line regions : the 'missing link' in the active galactic nucleus populationDudik, Rachel. January 2007 (has links)
Thesis (Ph. D.)--George Mason University, 2007. / Title from PDF t.p. (viewed Jan. 17, 2008). Thesis director: Shobita Satyapal. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Sciences. Vita: p. 217. Includes bibliographical references (p. 202-216). Also available in print.
|
8 |
Star formation in unobscured quasarsPitchford, Lura Katherine 30 August 2021 (has links)
It is now well established that a substantial fraction of all galaxy assembly occurs in intense bursts of star formation and black hole accretion, but the role of these two modes and how much they affect one another remains unclear. We thus investigate this in three complementary studies. In the first, we assemble a sample of 513 quasars identified by the Sloan Digital Sky Survey with detections by Herschel. These objects span a redshift range of 0 < z < 4, and their SEDs give a mean SFR of ~1000M☉/year. When comparing these SFRs to the intrinsic properties of the quasars, we find no clear connections between the quasars and the ongoing star formation events in their hosts. We then look for evidence of AGN feedback in broad absorption line (BAL) quasars, as such features are indicative of outflowing material. We find that high-ionization BAL quasars have indistinguishable properties to those of classical quasars. In our second study, which describes an iron low-ionization BAL quasar, SDSS J121441.42-000137.8, our results are again consistent with no feedback. Thus, it seems unlikely that feedback plays a dominant role in quenching star formation at the extreme SFRs seen in our BAL objects. We lastly study the host of an optically-bright quasar, SDSS J160705.16+355358.6, with evidence of an ongoing merger. We create the Point Spread Function (PSF) using a star that is in the same part of the field as our object, a method which is relatively unexplored. By subtracting the PSF, we are able to extract some of the host properties. We compare two PSF creation methods and find the empirical approach to be superior. Fits to the SEDs of the two galaxies are consistent with both falling on or above the main sequence of star formation. It is additionally plausible that these two galaxies could coalesce into a single massive quiescent galaxy by z ~ 2, and thus serve as progenitors to this class of galaxy that has proven challenging to our understanding of galaxy assembly. / Doctor of Philosophy / Quasars are among some of the brightest objects in the Universe and are powered by supermassive black holes that are rapidly accreting new material. The light from these distant objects can be detected across the electromagnetic spectrum, with each wavelength regime offering new insight into their properties. Further, if we look at their spectra, the features appear redshifted, i.e. they are at longer wavelengths compared to the expected values on Earth. More distant objects have higher redshifts. This, coupled with the constant speed of light, tells us that light from a quasar that has reached us on Earth must have been emitted many years ago; in other words, quasars offer glimpses into the past and can be used study how our Universe has assembled over time.
Star formation and quasar activity in galaxies have been shown to coexist across all redshifts. This suggests a deep connection between a galaxy's stellar and black hole mass assemblies. Both peak at z ~ 2, implying that a substantial amount of all galaxy assembly took place in high-redshift, dusty bursts of star formation and quasar activity. This dust absorbs light originally emitted at optical/UV wavelengths and reradiates it in the infrared, making infrared wavelengths the perfect regime in which to investigate the connection between the two processes.
In this dissertation, I have focused specifically on quasars with detections at both optical and far-infrared (FIR) wavelengths to determine what effect, if any, quasars have on the galaxies in which they reside. The optical emission of these systems describes the properties of the quasars, while the FIR estimates star formation rates (SFRs) in their hosts. Many astronomers invoke something called feedback, in which the quasar regulates the host star formation, to align theory with observations. We search for evidence of this process in the very bright quasars located within extremely star-forming systems. We, however, find no such evidence. This could imply that, at the high luminosities of our systems, feedback is not the dominant effect in regulating star formation, but perhaps some host self-regulation is instead. It could also imply that the feedback timescale is much shorter than that of either quasar or extreme star formation activity, making direct observations of feedback difficult.
|
9 |
On the Escape of Lyman Radiation from Local GalaxiesLeitet, Elisabet January 2011 (has links)
Cosmic reionization was most likely initiated by star forming dwarf galaxies. Little is known about the physical mechanisms allowing ionizing Lyman continuum (LyC) photons to escape from galaxies, but to learn more we can study local galaxies in detail. Until now, there has however only been one claim of a local LyC leaking galaxy, the disputed case of Haro 11. The lack of local detections could in part be a combined effect of technical problems and search strategies. Re-examining the FUSE (Far Ultraviolet Spectroscopic Explorer) data of Haro 11 led us to develop a new model for the spectral reduction, by which we could confirm an escape fraction of LyC photons (fesc) of 3.3±0.7%. In addition, eight more galaxies from the FUSE archive were examined leading to a new detection, Tol 1247-232, with fesc = 2.4±0.5%. The low value derived from the stacked spectrum of the whole sample, fesc = 1.4±0.4%, could be an indication of an evolving fesc scenario and/or an effect of probing the wrong targets. Local LyC candidates are normally selected among starburst galaxies with high equivalent widths in Hα. This can however give preference to ionization bounded H II regions with low escape fractions. In an attempt to overcome this selection bias, we developed a novel method to select LyC leaking galaxies. The selection is based on a blue continuum and weak emission lines, properties that in combination can be explained only by models with very high fesc. Using these criteria, we selected a sample of leaking candidates at z≈0.03 to be observed in Hα and Johnson B filters. The sample galaxies have properties that strongly favour leakage. Among these are clear signs of mergers and interaction with neighbouring galaxies, off-centre major star forming regions and spectral properties indicating previous starburst activity. The Lyman-alpha (Lyα) line is often used as a tracer for the distant galaxies believed to have reionized the universe. Here, for the first time local face-on spiral galaxies are studied in Lyα imaging. All three galaxies are emitting Lyα photons in the polar direction far out in the spiral arms, in clear contrast to previously studied irregular galaxies where strong emission is seen from the nuclei. If the small sample studied here is representative, it will have implications for detecting Lyα galaxies at high redshifts as it would depend strongly on the viewing angle.
|
10 |
Unveiling the nature of blue compact galaxiesMicheva, Genoveva January 2012 (has links)
Blue compact galaxies (BCGs) are gas-rich star-forming low redshift galaxies with low metallicities. In some cases the relative strength of the starburst can be so high that it completely dominates the light output of the galaxy, an obstacle which has been countered by deeper optical imaging data and observations in the near infra-red (NIR) regime. This has revealed an older population referred to as the "host". In an effort to study the hosts of BCGs we have analyzed new and extremely deep UBVRIHKs imaging data for 46 high and low luminosity BCGs. For several BCGs the data reveal previously undetected extended low surface brightness components beyond the μB~26 mag arcsec-2 isophote. These are predominantly the luminous BCGs in the sample, and they show tails, plumes, optical bridges between companion galaxies, and other signs of merging or strong tidal interactions. The low luminosity BCGs, on the other hand, are well represented by an exponential disk profile down to the reliability limit of the data at a surface brightness level of μB~28 mag arcsec-2. The burst and host populations are examined separately. The integrated colors of both are compared to predictions from spectral evolutionary models, giving an indication of their respective ages and metallicities. Our analysis suggests that for the luminous BCGs a strong contribution by nebular emission is present almost down to the Holmberg radius, invalidating the host structural parameters obtained from brighter isophotes. Possible evolutionary links to quiescent galaxies like dEs, dIs, and LSBGs are explored by examining the structural parameters derived from two radial ranges typically assumed to be dominated by the underlying host galaxy. In this parameter space the luminous BCGs in our sample deviate from their low luminosity counterparts and from BCG data in the literature. They are instead consistent with the structural properties of giant low surface brightness galaxies with central surface brightnesses μB≥23 mag arcsec-2. We further examine the asymmetry and concentration parameters for the sample and study the correlation between the minimum asymmetry distribution in the optical and NIR vs morphological class, concentration and integrated colors to identify mergers/tidally interacting galaxies. A shift in the asymmetry distribution occurs for low luminosity BCGs from the optical to the NIR. In contrast, we find that the flocculent asymmetry component (due to star formation) completely dominates the composite asymmetry of high luminosity BCGs. We introduce an alternative asymmetry measure which successfully traces the dynamical asymmetry component (due to merging/tidal interaction) of the host. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
|
Page generated in 0.0403 seconds