Spelling suggestions: "subject:"stars : fundamental parameters"" "subject:"ctars : fundamental parameters""
1 |
Effective temperatures of cataclysmic-variable white dwarfs as a probe of their evolutionPala, A. F., Gänsicke, B. T., Townsley, D., Boyd, D., Cook, M. J., De Martino, D., Godon, P., Haislip, J. B., Henden, A. A., Hubeny, I., Ivarsen, K. M., Kafka, S., Knigge, C., LaCluyze, A. P., Long, K. S., Marsh, T. R., Monard, B., Moore, J. P., Myers, G., Nelson, P., Nogami, D., Oksanen, A., Pickard, R., Poyner, G., Reichart, D. E., Rodriguez Perez, D., Schreiber, M. R., Shears, J., Sion, E. M., Stubbings, R., Szkody, P., Zorotovic, M. 21 April 2017 (has links)
We present HST spectroscopy for 45 cataclysmic variables (CVs), observed with HST/COS and HST/STIS. For 36 CVs, the white dwarf is recognisable through its broad Ly a absorption profile and we measure the white dwarf effective temperatures (T-eff) by fitting the HST data assuming log g = 8.35, which corresponds to the average mass for CV white dwarfs (similar or equal to 0.8M(circle dot)). Our results nearly double the number of CV white dwarfs with an accurate temperature measurement. We find that CVs above the period gap have, on average, higher temperatures (< T-eff > similar or equal to 23 000 K) and exhibit much more scatter compared to those below the gap (< T-eff >similar or equal to 15 000 K). While this behaviour broadly agrees with theoretical predictions, some discrepancies are present: ( i) all our new measurements above the gap are characterized by lower temperatures (T-eff similar or equal to 16 000-26 000 K) than predicted by the present-day CV population models (T-eff similar or equal to 38 000-43 000 K); (ii) our results below the gap are not clustered in the predicted narrow track and exhibit in particular a relatively large spread near the period minimum, which may point to some shortcomings in the CV evolutionary models. Finally, in the standard model of CV evolution, reaching the minimum period, CVs are expected to evolve back towards longer periods with mean accretion rates. M less than or similar to 2 x 10(-11)M(circle dot)yr(-1), corresponding to T-eff less than or similar to 11 500 K. We do not unambiguously identify any such system in our survey, suggesting that this major component of the predicted CV population still remains elusive to observations.
|
2 |
Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O starsLatour, M., Chayer, P., Green, E. M., Irrgang, A., Fontaine, G. 19 January 2018 (has links)
Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so well characterized. Aims. We perform a comprehensive spectroscopic analysis of four such bright sdO stars, namely Feige 34, Feige 67, AGK+81 degrees 266, and LS II + 18 degrees 9, among which the first three are used as standard stars for flux calibration. Our goal is to determine their atmospheric parameters, chemical properties, and evolutionary status to better understand this class of stars that are en route to become white dwarfs. Methods. We used non-local thermodynamic equilibrium model atmospheres in combination with high quality optical and UV spectra. Photometric data were also used to compute the spectroscopic distances of our stars and to characterize the companion responsible for the infrared excess of Feige 34. Results. The four bright sdO stars have very similar atmospheric parameters with T-eff between 60 000 and 63 000 K and log g (cm s(-2)) in the range 5.9 to 6.1. This places these objects right on the theoretical post-EHB evolutionary tracks. The UV spectra are dominated by strong iron and nickel lines and suggest abundances that are enriched with respect to those of the Sun by factors of 25 and 60. On the other hand, the lighter elements, C, N, O, Mg, Si, P, and S are depleted. The stars have very similar abundances, although AGK + 81 degrees 266 shows differences in its light element abundances. For instance, the helium abundance of this object is 10 times lower than that observed in the other three stars. All our stars show UV spectral lines that require additional line broadening that is consistent with a rotational velocity of about 25 km s(-1). The infrared excess of Feige 34 is well reproduced by a M0 main-sequence companion and the surface area ratio of the two stars suggests that the system is a physical binary. However, the lack of radial velocity variations points towards a low inclination and/or long orbital period. Spectroscopic and HIPPARCOS distances are in good agreement for our three brightest stars. Conclusions. We performed a spectroscopic analysis of four hot sdO stars that are very similar in terms of atmospheric parameters and chemical compositions. The rotation velocities of our stars are significantly higher than what is observed in their immediate progenitors on the EHB, suggesting that angular momentum may be conserved as the stars evolve away from the EHB.
|
3 |
The Ages of A-StarsJones, Jeremy W 12 August 2016 (has links)
Stars with spectral type `A' (also called A-type stars or just A-stars) are bright intermediate mass stars (∼1.5-2.5 M⊙) that make up ∼1% of stars within 25 parsecs, and ∼20% of the brightest stars in the night sky (V < 3 mag). Most A-stars rotate rapidly with rotational velocities that range from ∼100 to ∼200 km/s in most cases, but can exceed 300 km/s. Such rapid rotation not only causes a star's observed properties (flux, temperature, and radius) to be inclination dependent, but also changes how the star evolves both chemically and structurally.
Herein we conduct an interferometric survey of nearby A-stars using the CHARA Array. The long baselines of this optical/infrared interferometer enable us to measure the angular sizes of stars as small as ∼0.2 mas, and directly map the oblate shapes of rotationally distorted stars. This in turn allows us to more accurately determine their photospheric properties and estimate their ages and masses by comparing to evolution models that account for rotation. To facilitate this survey, we construct a census of all 232 A-stars within 50 parsecs (the 50PASS) and from that construct a sample of A-stars (the OSESNA) that lend themselves to interferometric observations with the CHARA Array (i.e., are in the northern hemisphere and have no known, bright, and nearby companions - 108 stars in total). The observations are interpreted by constructing a physical model of a rapidly rotating star from which we generate both photometric and interferometric model observations for comparison with actual observations. The stellar properties of the best fitting model are then compared to the MESA evolution models to estimate an age and a mass.
To validate this physical model and the adopted MESA code, we first determine the ages of seven members of the Ursa Major moving group, which are expected to be coeval. With the exception of one star with questionable membership, these stars show a 1-σ spread in age of 56 Myr. This agreement validates our technique and provides a new estimate of the age for the group of 414 ± 23 Myr. We apply this validated technique to the directly-imaged `planet' host star κ Andromedae and determine its age to be 47+27-40 Myr. This implies the companion has a mass of 22+8-9 MJup and is thus more likely a brown dwarf than a giant planet. In total, we present new age and mass estimates for 55 nearby A-stars including six members of the Hyades open cluster, five stars with the λ Boötis chemical peculiarity, nine stars which have an infrared excess, possibly from a debris disk, and nine pulsating stars.
|
4 |
Stellar and Planetary Parameters for K2's Late-type Dwarf Systems from C1 to C5Martinez, Arturo O., Crossfield, Ian J. M., Schlieder, Joshua E., Dressing, Courtney D., Obermeier, Christian, Livingston, John, Ciceri, Simona, Peacock, Sarah, Beichman, Charles A., Lépine, Sébastien, Aller, Kimberly M., Chance, Quadry A., Petigura, Erik A., Howard, Andrew W., Werner, Michael W. 03 March 2017 (has links)
The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory's New Technology Telescope, we obtained R approximate to 1000 J-, H-, and K-band (0.95-2.52 mu m) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4-M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R-circle dot (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet's radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2. We find a median planet radius and an equilibrium temperature of approximately 3 R-circle plus and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.
|
5 |
The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based AstrometryBond, Howard E., Schaefer, Gail H., Gilliland, Ronald L., Holberg, Jay B., Mason, Brian D., Lindenblad, Irving W., Seitz-McLeese, Miranda, Arnett, W. David, Demarque, Pierre, Spada, Federico, Young, Patrick A., Barstow, Martin A., Burleigh, Matthew R., Gudehus, Donald 08 May 2017 (has links)
Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1. V star Sirius. A, the brightest star in the sky, orbited in a 50.13. year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained over nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063 +/- 0.023 M circle dot and 1.018 +/- 0.011 M circle dot for Sirius. A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of similar to 15-25 M-Jup. The location of Sirius. B in the Hertzsprung-Russell diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of similar to 126 Myr. The position of Sirius. B on the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228 +/- 10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly subsolar metallicity, of about 0.85 Z circle dot, to fit its location on the luminosity-radius plane. The age of Sirius. A based on these models is about 237-247. Myr, with uncertainties of +/- 15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this and the orbital eccentricity remains high.
|
6 |
Examining the relationships between colour, T eff , and [M/H] for APOGEE K and M dwarfsSchmidt, Sarah J., Wagoner, Erika L., Johnson, Jennifer A., Davenport, James R. A., Stassun, Keivan G., Souto, Diogo, Ge, Jian 11 August 2016 (has links)
We present the effective temperatures (T-eff), metallicities, and colours in Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer filters, of a sample of 3834 late-K and early-M dwarfs selected from the SDSS Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectroscopic survey ASPCAP (APOGEE Stellar Parameters and Chemical Abundances Pipeline) catalogue. We confirm that ASPCAP T-eff values between 3550 < T-eff < 4200 K are accurate to similar to 100 K compared to interferometric T-eff values. In that same T-eff range, ASPCAP metallicities are accurate to 0.18 dex between -1.0 <[M/H]< 0.2. For these cool dwarfs, nearly every colour is sensitive to both T-eff and metallicity. Notably, we find that g - r is not a good indicator of metallicity for near-solar metallicity early-M dwarfs. We confirm that J - K-S colour is strongly dependent on metallicity, and find that W1 - W2 colour is a promising metallicity indicator. Comparison of the late-K and early-M dwarf colours, metallicities, and T-eff to those from three different model grids shows reasonable agreement in r - z and J - K-S colours, but poor agreement in u - g, g - r, and W1 - W2. Comparison of the metallicities of the KM dwarf sample to those from previous colour-metallicity relations reveals a lack of consensus in photometric metallicity indicators for late-K and early-M dwarfs. We also present empirical relations for T-eff as a function of r - z colour combined with either [M/H] or W1 - W2 colour, and for [M/H] as a function of r - z and W1 - W2 colour. These relations yield T-eff to similar to 100 K and [M/H] to similar to 0.18 dex precision with colours alone, for T-eff in the range of 3550-4200 K and [M/H] in the range of -0.5-0.2.
|
7 |
Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186Souto, D., Cunha, K., Garcia-Hernandez, D. A., Zamora, O., Prieto, C. Allende, Smith, V. V., Mahadevan, S., Blake, C., Johnson, J. A., Jonsson, H., Pinsonneault, M., Holtzman, J., Majewski, S. R., Shetrone, M., Teske, J., Nidever, D., Schiavon, R., Sobeck, J., Garcia Perez, A. E., Gomez Maqueo Chew, Y., Stassun, K. 31 January 2017 (has links)
We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution (R similar to 22,500) H-band spectra from the SDSS-IV-APOGEE survey. Chemical abundances of 13 elements-C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe-are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H2O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H](Kepler-138) = -0.09 +/- 0.09 dex and [Fe/H](Kepler-186) = -0.08 +/- 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by similar to 0.1-0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55 +/- 0.10 for Kepler-138 and 0.52 +/- 0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.
|
8 |
A SPECTROSCOPIC SEARCH FOR CHEMICALLY STRATIFIED WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEYManseau, P. M., Bergeron, P., Green, E. M. 13 December 2016 (has links)
We present a detailed search and analysis of chemically stratified hybrid (traces of helium and hydrogen) white dwarfs in the Sloan Digital Sky Survey (SDSS). Only one stratified white dwarf, PG 1305-017, was known prior to this analysis. The main objective is to confirm the existence of several new stratified objects. We first describe our new generation of stratified model atmospheres, where a thin hydrogen layer floats in diffusive equilibrium on top of a more massive helium layer. We then present the results of our search for hot (T-eff > 30,000 K) white dwarfs with a hybrid spectral type among the similar to 38,000 white dwarf spectra listed in the SDSS. A total of 51 spectra were retained in our final sample, which we analyze using spectroscopic fits to both chemically homogeneous and stratified model atmospheres. We identify 14 new stratified white dwarfs in the SDSS sample. From these results, we draw several conclusions regarding the physical processes that might explain the presence of helium in the atmospheres of all the stars in our sample.
|
9 |
Analysis of Cepheid SpectraTaylor, Melinda Marie January 1998 (has links)
Using high resolution optical spectra from Mount John University Observatory, Mount Stromlo Observatory and the Anglo-Australian Observatory, new, high accuracy radial velocity curves have been obtained for the two bright southern Cepheids l carinae (HR 3884) and beta doradus (HR 1922). An indepth investigation into period variations, cycle-to-cycle and long-term variations in the velocity curves and the reliability of the combination of velocity data from different observatories is carried out. Evidence for shock waves in the atmosphere of l car and resonance in beta dor is discussed. A grid of static model atmospheres incorporating plane-parallel geometry is compared with the observational spectra of both Cepheids, using line depth ratios, to determine the variation in effective temperature, surface gravity and microturbulence with phase. This information is used to determine the phase dependence of the surface-brightness for both Cepheids. The surface brightness variation with phase was found to follow an almost linear relationship. The distance to and radius of the Cepheids are determined using both a near-infrared version of the Barnes-Evans method and the Fourier Baade-Wesselink (BW) method. The derived radii and distances agree within the limits of the errors for both methods. The Fourier BW method was found to be very sensitive to phase shifts between the photometric and spectroscopic data and the derived distance highly dependent on the assumed reddening. An investigation into line profile variations in l car and beta dor has revealed the magnitude of these phenomena increase as the pulsational period of the Cepheid increases. It is estimated that line level variations introduce an additional uncertainty into derived radii of approximately 4 per cent for beta dor and 10 per cent in lcar. The uncertainty introduced into derived distances and radii by line profile asymmetries was estimated to be of the order of 6 per cent in beta dor and 10 per cent in l car. A comparative analysis is made of the hydrogen line radial velocity curves of l car and beta dor. A trend in the properties of these radial velocity curves with period has been revealed. In longer period Cepheids, the Halpha line seems to be forming in a region that does not partake in the pulsation as a whole, probably in a chromospheric shell. A quantitative analysis of the asymmetries in these lines reveal large redward asymmetries near maximum infall velocity. The magnitude of these asymmetries and the period for which they are present are larger in l Car than in beta dor. The blueward asymmetries in the Halpha line in l Car are comparable in magnitude to the redward asymmetries while the other lines exhibit only small blueward asymmetries. A qualitative analysis of these line profiles with phase reveal no conclusive evidence for line doubling in these Cepheids. Evidence of emission is found in the Halpha and H Beta lines of beta dor and l car. The strength and duration of the emission is found to be greater in the longer period Cepheid. Although it is likely that this emission is shock-related, theoretical work is needed to determine the exact origin of the emission. A non-LTE radiative hydrodynamic model for l Car has been created. This atmosphere will be used in further work to calculate synthetic spectral line profiles which will aid the interpretation of our observational results.
|
10 |
Characterization of the Stellar / Substellar BoundaryDieterich, Sergio Bonucci 18 November 2013 (has links)
The aim of this dissertation is to address the topic of distinguishing very low mass stars from brown dwarfs through observational means. To that end, we seek to better characterize both populations and establish mechanisms that facilitate establishing an individual object's membership in either the very low mass star or the brown dwarf populations. The dissertation is composed of three separate observational studies. In the first study we report on our analysis of HST/NICMOS snapshot high resolution images of 255 stars in 201 systems within ~10 parsecs of the Sun. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems. We calculate a multiplicity fraction of $0.0-0.0+3.5% for L companions to M dwarfs in the separation range of 5 to 70 AU, and $2.3-0.7+5.0% for L and T companions to M dwarfs in the separation range of 10 to 70 AU. Considering these results and results from several other studies, we argue that the so-called "brown dwarf desert" extends to binary systems with low mass primaries and is largely independent of primary mass, mass ratio, and separation.
In the second study we construct a Hertzsprung-Russell diagram for the stellar/substellar boundary based on a sample of 63 objects ranging in spectral type from M6V to L4. We report new VRI photometry for 63 objects and new trigonometric parallaxes for 37 objects. We employ a novel SED fitting algorithm to determine effective temperatures, bolometric luminosities, and radii. We find evidence for the local minimum in the radius-temperature and radius-luminosity trends that may indicate the end of the stellar main sequence and the start of the brown dwarf sequence at $Teff ~2075K, log(L/Lsun) ~ -3.9, and (R/Rsun) ~ 0.086.
The third study is a pilot study for future work and part of a long term search for astrometric binaries that have the potential to yield dynamical masses. We report the discovery of five new multiple systems and discuss their potential for determining dynamical masses: LHS 2071AB, GJ 1215 ABC, LTT 7434 AB, LHS 501 AC, and LHS 3738 AB.
|
Page generated in 0.1259 seconds