• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 16
  • 14
  • 14
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce ii Lines in the H-band Spectral Window

Cunha, Katia, Smith, Verne V., Hasselquist, Sten, Souto, Diogo, Shetrone, Matthew D., Allende Prieto, Carlos, Bizyaev, Dmitry, Frinchaboy, Peter, García-Hernández, D. Anibal, Holtzman, Jon, Johnson, Jennifer A., Jőnsson, Henrik, Majewski, Steven R., Mészáros, Szabolcs, Nidever, David, Pinsonneault, Mark, Schiavon, Ricardo P., Sobeck, Jennifer, Skrutskie, Michael F., Zamora, Olga, Zasowski, Gail, Fernández-Trincado, J. G. 01 August 2017 (has links)
Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between lambda 1.51 and 1.69 mu m). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R = lambda/delta lambda = 100,000) Fourier Transform Spectrometer (FTS) spectrum of a Boo and an APOGEE spectrum (R. =. 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using alpha Boo as a standard star, with the absolute cerium abundance in alpha Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N-and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.
2

A SUPER-SOLAR METALLICITY FOR STARS WITH HOT ROCKY EXOPLANETS

Mulders, Gijs D., Pascucci, Ilaria, Apai, Dániel, Frasca, Antonio, Molenda-Żakowicz, Joanna 23 November 2016 (has links)
Host star metallicity provides a measure of the conditions in protoplanetary disks at the time of planet formation. Using a sample of over 20,000 Kepler stars with spectroscopic metallicities from the LAMOST survey, we explore how the exoplanet population depends on host star metallicity as a function of orbital period and planet size. We find that exoplanets with orbital periods less than 10 days are preferentially found around metal-rich stars ([Fe/H] similar or equal to 0.15 +/- 0.05 dex). The occurrence rates of these hot exoplanets increases to similar to 30% for super-solar metallicity stars from similar to 10% for stars with a sub-solar metallicity. Cooler exoplanets, which reside at longer orbital periods and constitute the bulk of the exoplanet population with an occurrence rate of greater than or similar to 90%, have host star metallicities consistent with solar. At short orbital periods, P < 10 days, the difference in host star metallicity is largest for hot rocky planets (< 1.7 R-circle plus), where the metallicity difference is [Fe/H] similar or equal to 0.25 +/- 0.07 dex. The excess of hot rocky planets around metal-rich stars implies they either share a formation mechanism with hot Jupiters, or trace a planet trap at the protoplanetary disk inner edge, which is metallicity dependent. We do not find statistically significant evidence for a previously identified trend that small planets toward the habitable zone are preferentially found around low-metallicity stars. Refuting or confirming this trend requires a larger sample of spectroscopic metallicities.
3

Silicon and oxygen abundances in planet-host stars

Brugamyer, Erik John 11 February 2011 (has links)
The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 60 planet hosts and a control sample of 60 metal-rich stars without giant planets. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. Due to our large error bars on oxygen abundances, we do not yet observe any correlation between oxygen abundance and planet detection rate. We predict that a correlation between planet occurrence and oxygen abundance should emerge when we can measure [O/Fe] at 0.05 dex precision. Since up to 20% of the carbon in the universe may be in refractory grains, we also predict that planet detection rate should correlate positively with host star carbon abundance for any population of planets formed by core accretion. / text
4

Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances

Wilson, Robert F., Teske, Johanna, Majewski, Steven R., Cunha, Katia, Smith, Verne, Souto, Diogo, Bender, Chad, Mahadevan, Suvrath, Troup, Nicholas, Prieto, Carlos Allende, Stassun, Keivan G., Skrutskie, Michael F., Almeida, Andrés, García-Hernández, D. A., Zamora, Olga, Brinkmann, Jonathan 17 January 2018 (has links)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed similar to 600 transiting exoplanets and exoplanet candidates from Kepler (Kepler Objects of Interest, KOIs), most with >= 18 epochs. The combined multi-epoch spectra are of high signal-to-noise ratio (typically >= 100) and yield precise stellar parameters and chemical abundances. We first confirm the ability of the APOGEE abundance pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf stars-the primary Kepler host stellar type-by comparing the ASPCAP-derived stellar parameters with those from independent high-resolution spectroscopic characterizations for 221 dwarf stars in the literature. With a sample of 282 close-in (P < 100 days) KOIs observed in the APOGEE KOI goal program, we find a correlation between orbital period and host star [Fe/H] characterized by a critical period, P-crit = 8.3(-4.1)(+0.1) days, below which small exoplanets orbit statistically more metal-enriched host stars. This effect may trace a metallicity dependence of the protoplanetary disk inner radius at the time of planet formation or may be a result of rocky planet ingestion driven by inward planetary migration. We also consider that this may trace a metallicity dependence of the dust sublimation radius, but we find no statistically significant correlation with host T-eff and orbital period to support such a claim.
5

Galactic archaeology with metal-poor stars

Nordlander, Thomas January 2017 (has links)
The chemical fingerprints of old, metal-poor stars can be used to unravel the events of the newborn Universe and help us understand the properties of the first stars and star clusters. The study of nearby stars to infer properties in the distant past is often referred to as Galactic archaeology. However, the chemical composition of stars cannot be observed directly, but must be inferred by means of spectroscopic modelling. Traditionally, this modelling utilises one-dimensional (1D) stellar atmospheres in hydrostatic and local thermodynamic equilibrium (LTE). Today, we know that departures from LTE (known as NLTE), and differences between 1D model atmospheres and their hydrodynamical three-dimensional (3D) counterparts, become increasingly severe at lower metallicity. The development of NLTE modelling of spectral line formation in 3D atmospheres is still in its infancy, but constitutes a remarkable step forward that has been made possible by parallelised codes and supercomputers. The central theme of this thesis is the application of NLTE analyses to metal-poor stars, to help usher the field of Galactic archaeology forward with important consequences for the nature of the first stellar generations. I present a theoretical NLTE study of aluminium, where I validate the analysis using a set of bright standard stars and provide calculated NLTE effects for a large parameter space. I perform 3D NLTE calculations for the solar spectrum to better constrain the zero-point of the cosmic abundance scale, and find excellent agreement with the meteoritic aluminium abundance. I also present NLTE analyses of metal-poor stars in the globular clusters NGC 6397 and M4. While globular cluster stars were long expected to form from a chemically homogeneous medium, star-to-star abundance variations of light elements indicate multiple epochs of star formation. Massive first-generation stars polluted the interstellar medium from which later generations formed, and I use the observed abundance variations to deduce the properties of the polluting stars. Among the heavier elements, I uncover evolutionary abundance variations that match predictions of stellar evolution models with atomic diffusion. The results indicate that the chemical abundance ratios of unevolved metal-poor stars are affected by gravitational settling, with a bias of the order 25-50 %, increasing towards lower metallicity. This atmospheric depletion mechanism is a probable explanation to why the stellar abundances of lithium fall short of the predictions from standard Big Bang nucleosynthesis. Finally, I apply a 3D NLTE abundance analysis to the red giant SMSS 0313-6708, which is the most iron-deficient star known. The chemical abundance pattern of this star indicates that it formed from gas affected only by Big Bang nucleosynthesis and a single faint supernova. Comparison of the inferred abundance pattern to theoretical predictions leads to constraints on the explosion mechanism and the mass of the metal-free progenitor star.
6

Chemical Complexity in the Eu-enhanced Monometallic Globular NGC 5986

Johnson, Christian I., Caldwell, Nelson, Rich, R. Michael, Mateo, Mario, Bailey III, John I., Olszewski, Edward W., Walker, Matthew G. 08 June 2017 (has links)
NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with "iron-complex" clusters known to exhibit significant metallicity and heavy-element dispersions. In order to determine whether NGC 5986 joins the iron-complex cluster class, we investigated the chemical composition of 25 red giant branch and asymptotic giant branch cluster stars using high-resolution spectra obtained with the Magellan-M2FS instrument. Cluster membership was verified using a combination of radial velocity and [Fe/H] measurements, and we found the cluster to have a mean heliocentric radial velocity of +99.76 km s(-1) (sigma = 7.44 km s(-1)). We derived a mean metallicity of [Fe/H] = -1.54 dex (sigma = 0.08 dex), but the cluster's small dispersion in [Fe/H] and low [La/Eu] abundance preclude it from being an iron-complex cluster. NGC 5986 has <[Eu/Fe]> = +0.76 dex (sigma = 0.08 dex), which is among the highest ratios detected in a Galactic cluster, but the small [Eu/Fe] dispersion is puzzling because such high values near [Fe/H] similar to -1.5 are typically only found in dwarf galaxies exhibiting large [Eu/Fe] variations. NGC 5986 exhibits classical globular cluster characteristics, such as uniformly enhanced [alpha/Fe] ratios, a small dispersion in Fe-peak abundances, and (anti) correlated light-element variations. Similar to NGC 2808, we find evidence that NGC 5986 may host at least four to five populations with distinct light-element compositions, and the presence of a clear Mg-Al anticorrelation along with an Al-Si correlation suggests that the cluster gas experienced processing at temperatures. greater than or similar to 65-70 MK. However, the current data do not support burning temperatures exceeding similar to 100 MK. We find some evidence that the first-and second-generation stars in NGC 5986 may be fully spatially mixed, which could indicate that the cluster has lost a significant fraction of its original mass.
7

Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

Johnson, Christian I., Rich, R. Michael, Caldwell, Nelson, Mateo, Mario, Bailey, John I., Olszewski, Edward W., Walker, Matthew G. 18 January 2018 (has links)
Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster's detailed chemical composition. Therefore, we have used high- resolution spectra from the Magellan-M2FS and VLT-FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of -48.8 km s(-1) (sigma = 5.3 km s(-1); 148 stars) and <[Fe/H]> = -0.87 dex (19 stars), but the cluster's 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti) correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster's low <[La/Eu]> = -0.11 dex indicates significant pollution with r- process material. We confirm that both HBs contain cluster members, but metallicity and lightelement variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as Delta Y similar to 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.
8

Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars

Latour, M., Chayer, P., Green, E. M., Irrgang, A., Fontaine, G. 19 January 2018 (has links)
Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so well characterized. Aims. We perform a comprehensive spectroscopic analysis of four such bright sdO stars, namely Feige 34, Feige 67, AGK+81 degrees 266, and LS II + 18 degrees 9, among which the first three are used as standard stars for flux calibration. Our goal is to determine their atmospheric parameters, chemical properties, and evolutionary status to better understand this class of stars that are en route to become white dwarfs. Methods. We used non-local thermodynamic equilibrium model atmospheres in combination with high quality optical and UV spectra. Photometric data were also used to compute the spectroscopic distances of our stars and to characterize the companion responsible for the infrared excess of Feige 34. Results. The four bright sdO stars have very similar atmospheric parameters with T-eff between 60 000 and 63 000 K and log g (cm s(-2)) in the range 5.9 to 6.1. This places these objects right on the theoretical post-EHB evolutionary tracks. The UV spectra are dominated by strong iron and nickel lines and suggest abundances that are enriched with respect to those of the Sun by factors of 25 and 60. On the other hand, the lighter elements, C, N, O, Mg, Si, P, and S are depleted. The stars have very similar abundances, although AGK + 81 degrees 266 shows differences in its light element abundances. For instance, the helium abundance of this object is 10 times lower than that observed in the other three stars. All our stars show UV spectral lines that require additional line broadening that is consistent with a rotational velocity of about 25 km s(-1). The infrared excess of Feige 34 is well reproduced by a M0 main-sequence companion and the surface area ratio of the two stars suggests that the system is a physical binary. However, the lack of radial velocity variations points towards a low inclination and/or long orbital period. Spectroscopic and HIPPARCOS distances are in good agreement for our three brightest stars. Conclusions. We performed a spectroscopic analysis of four hot sdO stars that are very similar in terms of atmospheric parameters and chemical compositions. The rotation velocities of our stars are significantly higher than what is observed in their immediate progenitors on the EHB, suggesting that angular momentum may be conserved as the stars evolve away from the EHB.
9

The Bulge Metallicity Distribution from the APOGEE Survey

García Pérez, Ana E., Ness, Melissa, Robin, Annie C., Martinez-Valpuesta, Inma, Sobeck, Jennifer, Zasowski, Gail, Majewski, Steven R., Bovy, Jo, Prieto, Carlos Allende, Cunha, Katia, Girardi, Léo, Mészáros, Szabolcs, Nidever, David, Schiavon, Ricardo P., Schultheis, Mathias, Shetrone, Matthew, Smith, Verne V. 10 January 2018 (has links)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) provides spectroscopic information of regions of the inner Milky Way, which are inaccessible to optical surveys. We present the first large study of the metallicity distribution of the innermost Galactic regions based on high-quality measurements for 7545 red giant stars within 4.5 kpc of the Galactic center, with the goal to shed light on the structure and origin of the Galactic bulge. Stellar metallicities are found, through multiple Gaussian decompositions, to be distributed in several components, which is indicative of the presence of various stellar populations such as the bar or the thin and the thick disks. Super-solar ([Fe/H] = +0.32) and solar ([Fe/H] = +0.00) metallicity components, tentatively associated with the thin disk and the Galactic bar, respectively, seem to be major contributors near the midplane. A solar-metallicity component extends outwards in the midplane but is not observed in the innermost regions. The central regions (within 3 kpc of the Galactic center) reveal, on the other hand, the presence of a significant metal-poor population ([Fe/H] = -0.46), tentatively associated with the thick disk, which becomes the dominant component far from the midplane (vertical bar Z vertical bar >= +0.75 kpc). Varying contributions from these different components produce a transition region at +0.5 kpc <= vertical bar Z vertical bar <= +1.0 kpc, characterized by a significant vertical metallicity gradient.
10

Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations

Hayes, Christian R., Majewski, Steven R., Shetrone, Matthew, Fernández-Alvar, Emma, Prieto, Carlos Allende, Schuster, William J., Carigi, Leticia, Cunha, Katia, Smith, Verne V., Sobeck, Jennifer, Almeida, Andres, Beers, Timothy C., Carrera, Ricardo, Fernández-Trincado, J. G., García-Hernández, D. A., Geisler, Doug, Lane, Richard R., Lucatello, Sara, Matthews, Allison M., Minniti, Dante, Nitschelm, Christian, Tang, Baitian, Tissera, Patricia B., Zamora, Olga 05 January 2018 (has links)
We find two chemically distinct populations separated relatively cleanly in the [Fe/H]-[Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe/H] < -0.9) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the alpha-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote "the HMg population") exhibits a significant net Galactic rotation, whereas the low-Mg population (or "the LMg population") has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with in situ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low-and high-a halo stars found in previous studies, suggesting that these are samples of the same two populations.

Page generated in 0.0609 seconds