• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 15
  • 15
  • 15
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ARE SOME MILKY WAY GLOBULAR CLUSTERS HOSTED BY UNDISCOVERED GALAXIES?

Zaritsky, Dennis, Crnojević, Denija, Sand, David J. 15 July 2016 (has links)
The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass-halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy's total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 GCs per 10(9)M(circle dot) of total mass, the surviving Milky Way (MW) subhalos with masses smaller than 10(10)M(circle dot) could host as many as 5-31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high-resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass-halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW's outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.
2

A HUBBLE SPACE TELESCOPE STUDY OF THE ENIGMATIC MILKY WAY HALO GLOBULAR CLUSTER CRATER

Weisz, Daniel R., Koposov, Sergey E., Dolphin, Andrew E., Belokurov, Vasily, Gieles, Mark, Mateo, Mario L., Olszewski, Edward W., Sills, Alison, Walker, Matthew G. 02 May 2016 (has links)
We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Crater's color-magnitude diagram (CMD) extends similar to 4 mag below the oldest main-sequence (MS) turnoff. Structurally, we find that Crater has a half-light radius of similar to 20 pc and no evidence for tidal distortions. We model. Crater's CMD as a simple stellar population (SSP) and alternatively by solving for its full star formation history. In both cases, Crater is well. described by an SSP with an age of similar to 7.5 Gyr, a metallicity of [ M / H] similar to 1.65, a total stellar mass of M-star similar to 1e4 M-circle dot, and. a luminosity of M-V similar to - 5.3, located at a distance of d similar to 145 kpc, with modest uncertainties due to differences in the underlying stellar evolution models. We argue that the sparse sampling of stars above the turnoff and subgiant branch are likely to be 1.0-1.4 M-circle dot blue stragglers and their evolved descendants, as opposed to intermediate- age MS stars. We find that. Crater is an unusually young cluster given its location in the Galaxy's outer halo. We discuss scenarios for Crater's origin, including the possibility of being stripped from the SMC or the accretion from lower- mass dwarfs such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have been incorporated into the Galaxy more recently than z similar to 1 (8 Gyr ago), providing an important new constraint on the accretion history of the Galaxy.
3

GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY

Harris, William E., Ciccone, Stephanie M., Eadie, Gwendolyn M., Gnedin, Oleg Y., Geisler, Douglas, Rothberg, Barry, Bailin, Jeremy 20 January 2017 (has links)
We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by similar or equal to 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] similar or equal to-2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R >= 4 R-eff, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.
4

Chemical Complexity in the Eu-enhanced Monometallic Globular NGC 5986

Johnson, Christian I., Caldwell, Nelson, Rich, R. Michael, Mateo, Mario, Bailey III, John I., Olszewski, Edward W., Walker, Matthew G. 08 June 2017 (has links)
NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with "iron-complex" clusters known to exhibit significant metallicity and heavy-element dispersions. In order to determine whether NGC 5986 joins the iron-complex cluster class, we investigated the chemical composition of 25 red giant branch and asymptotic giant branch cluster stars using high-resolution spectra obtained with the Magellan-M2FS instrument. Cluster membership was verified using a combination of radial velocity and [Fe/H] measurements, and we found the cluster to have a mean heliocentric radial velocity of +99.76 km s(-1) (sigma = 7.44 km s(-1)). We derived a mean metallicity of [Fe/H] = -1.54 dex (sigma = 0.08 dex), but the cluster's small dispersion in [Fe/H] and low [La/Eu] abundance preclude it from being an iron-complex cluster. NGC 5986 has <[Eu/Fe]> = +0.76 dex (sigma = 0.08 dex), which is among the highest ratios detected in a Galactic cluster, but the small [Eu/Fe] dispersion is puzzling because such high values near [Fe/H] similar to -1.5 are typically only found in dwarf galaxies exhibiting large [Eu/Fe] variations. NGC 5986 exhibits classical globular cluster characteristics, such as uniformly enhanced [alpha/Fe] ratios, a small dispersion in Fe-peak abundances, and (anti) correlated light-element variations. Similar to NGC 2808, we find evidence that NGC 5986 may host at least four to five populations with distinct light-element compositions, and the presence of a clear Mg-Al anticorrelation along with an Al-Si correlation suggests that the cluster gas experienced processing at temperatures. greater than or similar to 65-70 MK. However, the current data do not support burning temperatures exceeding similar to 100 MK. We find some evidence that the first-and second-generation stars in NGC 5986 may be fully spatially mixed, which could indicate that the cluster has lost a significant fraction of its original mass.
5

Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

Johnson, Christian I., Rich, R. Michael, Caldwell, Nelson, Mateo, Mario, Bailey, John I., Olszewski, Edward W., Walker, Matthew G. 18 January 2018 (has links)
Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster's detailed chemical composition. Therefore, we have used high- resolution spectra from the Magellan-M2FS and VLT-FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of -48.8 km s(-1) (sigma = 5.3 km s(-1); 148 stars) and <[Fe/H]> = -0.87 dex (19 stars), but the cluster's 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti) correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster's low <[La/Eu]> = -0.11 dex indicates significant pollution with r- process material. We confirm that both HBs contain cluster members, but metallicity and lightelement variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as Delta Y similar to 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.
6

Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

Fernández-Trincado, J. G., Zamora, O., García-Hernández, D. A., Souto, Diogo, Dell’Agli, F., Schiavon, R. P., Geisler, D., Tang, B., Villanova, S., Hasselquist, Sten, Mennickent, R. E., Cunha, Katia, Shetrone, M., Prieto, Carlos Allende, Vieira, K., Zasowski, G., Sobeck, J., Hayes, C. R., Majewski, S. R., Placco, V. M., Beers, T. C., Schleicher, D. R. G., Robin, A. C., Mészáros, Sz., Masseron, T., Pérez, Ana E. García, Anders, F., Meza, A., Alves-Brito, A., Carrera, R., Minniti, D., Lane, R. R., Fernández-Alvar, E., Moreno, E., Pichardo, B., Pérez-Villegas, A., Schultheis, M., Roman-Lopes, A., Fuentes, C. E., Nitschelm, C., Harding, P., Bizyaev, D., Pan, K., Oravetz, D., Simmons, A., Ivans, Inese I., Blanco-Cuaresma, S., Hernández, J., Alonso-García, J., Valenzuela, O., Chanamé, J. 23 August 2017 (has links)
We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe]. < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] greater than or similar to-1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.
7

Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy

Schiavon, Ricardo P., Zamora, Olga, Carrera, Ricardo, Lucatello, Sara, Robin, A. C., Ness, Melissa, Martell, Sarah L., Smith, Verne V., García-Hernández, D. A., Manchado, Arturo, Schönrich, Ralph, Bastian, Nate, Chiappini, Cristina, Shetrone, Matthew, Mackereth, J. Ted, Williams, Rob A., Mészáros, Szabolcs, Allende Prieto, Carlos, Anders, Friedrich, Bizyaev, Dmitry, Beers, Timothy C., Chojnowski, S. Drew, Cunha, Katia, Epstein, Courtney, Frinchaboy, Peter M., García Pérez, Ana E., Hearty, Fred R., Holtzman, Jon A., Johnson, Jennifer A., Kinemuchi, Karen, Majewski, Steven R., Muna, Demitri, Nidever, David L., Nguyen, Duy Cuong, O'Connell, Robert W., Oravetz, Daniel, Pan, Kaike, Pinsonneault, Marc, Schneider, Donald P., Schultheis, Matthias, Simmons, Audrey, Skrutskie, Michael F., Sobeck, Jennifer, Wilson, John C., Zasowski, Gail 11 February 2017 (has links)
Formation of globular clusters (GCs), the Galactic bulge, or galaxy bulges in general is an important unsolved problem in Galactic astronomy. Homogeneous infrared observations of large samples of stars belonging to GCs and the Galactic bulge field are one of the best ways to study these problems. We report the discovery by APOGEE (Apache Point Observatory Galactic Evolution Experiment) of a population of field stars in the inner Galaxy with abundances of N, C, and Al that are typically found in GC stars. The newly discovered stars have high [N/Fe], which is correlated with [Al/Fe] and anticorrelated with [C/Fe]. They are homogeneously distributed across, and kinematically indistinguishable from, other field stars within the same volume. Their metallicity distribution is seemingly unimodal, peaking at [Fe/H] similar to -1, thus being in disagreement with that of the Galactic GC system. Our results can be understood in terms of different scenarios. N-rich stars could be former members of dissolved GCs, in which case the mass in destroyed GCs exceeds that of the surviving GC system by a factor of similar to 8. In that scenario, the total mass contained in so-called 'first-generation' stars cannot be larger than that in 'second-generation' stars by more than a factor of similar to 9 and was certainly smaller. Conversely, our results may imply the absence of a mandatory genetic link between 'second-generation' stars and GCs. Last, but not least, N-rich stars could be the oldest stars in the Galaxy, the by-products of chemical enrichment by the first stellar generations formed in the heart of the Galaxy.
8

Spatial distribution of galactic globular clusters : distance uncertainties and dynamical effects

Souza, Juliana Crestani Ribeiro de January 2017 (has links)
Fornecemos uma amostra de 170 Aglomerados Globulares Galácticos (GCs) e analisamos as propriedades de sua distribuição espacial. Utilizando um vasto catálogo de nuvens escuras identificadas, listamos os GCs que estão atrás de uma ou mais delas e que podem estar submetidos a uma extinção mais complexa do que a considerada por mapas de extinção. Valores de incerteza em distância são obtidos da literatura recente e comparados com valores derivados de uma fórmula de propagação de erro. GCs são agrupados de acordo com características inusitadas, tais como idades relativamente jovens ou possível conexão com núcleos de galáxias anãs, de forma que o efeito desses grupos pode ser isolado na distribuição espacial geral. Adicionalmente, computamos o centróide da distribuição de GCs e estudamos como esse se relaciona com a distância ao centro da Galáxia. Considerando que uma formação galáctica via colapso monolítico é supostamente simétrica, investigamos assimetrias e como os valores de incerteza das distâncias as modificam. Velocidades espaciais e um potencial Galáctico são empregados para verificar se quaisquer assimetrias na distribuição espacial são devidas a objetos em movimento coerente, ou se são somente efeitos transientes. / We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties. Using a comprehensive dust cloud catalogue, we list the GCs that are behind one or more identified dust clouds and could be subjected to a more complex extinction curve than extinction catalogues consider. Distance uncertainty values are gathered from recent literature and compared to values derived from an error propagation formula. GCs are grouped according to unusual characteristics, such as relatively young age or possible connection to dwarf galaxy nuclei, so that their effect on the general distribution can be isolated. Additionally, we compute the centroid of the GC distribution and study how it relates to the distance to the centre of the Galaxy. Considering that galactic formation via monolithic collapse is expected to be symmetrical, we probe asymmetries and how distance uncertainty values modify them. Spatial velocities and a Galactic potential are used to verify if any asymmetries in the spatial distribution are due to co-moving objects, or if they are merely transient effects.
9

Spatial distribution of galactic globular clusters : distance uncertainties and dynamical effects

Souza, Juliana Crestani Ribeiro de January 2017 (has links)
Fornecemos uma amostra de 170 Aglomerados Globulares Galácticos (GCs) e analisamos as propriedades de sua distribuição espacial. Utilizando um vasto catálogo de nuvens escuras identificadas, listamos os GCs que estão atrás de uma ou mais delas e que podem estar submetidos a uma extinção mais complexa do que a considerada por mapas de extinção. Valores de incerteza em distância são obtidos da literatura recente e comparados com valores derivados de uma fórmula de propagação de erro. GCs são agrupados de acordo com características inusitadas, tais como idades relativamente jovens ou possível conexão com núcleos de galáxias anãs, de forma que o efeito desses grupos pode ser isolado na distribuição espacial geral. Adicionalmente, computamos o centróide da distribuição de GCs e estudamos como esse se relaciona com a distância ao centro da Galáxia. Considerando que uma formação galáctica via colapso monolítico é supostamente simétrica, investigamos assimetrias e como os valores de incerteza das distâncias as modificam. Velocidades espaciais e um potencial Galáctico são empregados para verificar se quaisquer assimetrias na distribuição espacial são devidas a objetos em movimento coerente, ou se são somente efeitos transientes. / We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties. Using a comprehensive dust cloud catalogue, we list the GCs that are behind one or more identified dust clouds and could be subjected to a more complex extinction curve than extinction catalogues consider. Distance uncertainty values are gathered from recent literature and compared to values derived from an error propagation formula. GCs are grouped according to unusual characteristics, such as relatively young age or possible connection to dwarf galaxy nuclei, so that their effect on the general distribution can be isolated. Additionally, we compute the centroid of the GC distribution and study how it relates to the distance to the centre of the Galaxy. Considering that galactic formation via monolithic collapse is expected to be symmetrical, we probe asymmetries and how distance uncertainty values modify them. Spatial velocities and a Galactic potential are used to verify if any asymmetries in the spatial distribution are due to co-moving objects, or if they are merely transient effects.
10

Spatial distribution of galactic globular clusters : distance uncertainties and dynamical effects

Souza, Juliana Crestani Ribeiro de January 2017 (has links)
Fornecemos uma amostra de 170 Aglomerados Globulares Galácticos (GCs) e analisamos as propriedades de sua distribuição espacial. Utilizando um vasto catálogo de nuvens escuras identificadas, listamos os GCs que estão atrás de uma ou mais delas e que podem estar submetidos a uma extinção mais complexa do que a considerada por mapas de extinção. Valores de incerteza em distância são obtidos da literatura recente e comparados com valores derivados de uma fórmula de propagação de erro. GCs são agrupados de acordo com características inusitadas, tais como idades relativamente jovens ou possível conexão com núcleos de galáxias anãs, de forma que o efeito desses grupos pode ser isolado na distribuição espacial geral. Adicionalmente, computamos o centróide da distribuição de GCs e estudamos como esse se relaciona com a distância ao centro da Galáxia. Considerando que uma formação galáctica via colapso monolítico é supostamente simétrica, investigamos assimetrias e como os valores de incerteza das distâncias as modificam. Velocidades espaciais e um potencial Galáctico são empregados para verificar se quaisquer assimetrias na distribuição espacial são devidas a objetos em movimento coerente, ou se são somente efeitos transientes. / We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties. Using a comprehensive dust cloud catalogue, we list the GCs that are behind one or more identified dust clouds and could be subjected to a more complex extinction curve than extinction catalogues consider. Distance uncertainty values are gathered from recent literature and compared to values derived from an error propagation formula. GCs are grouped according to unusual characteristics, such as relatively young age or possible connection to dwarf galaxy nuclei, so that their effect on the general distribution can be isolated. Additionally, we compute the centroid of the GC distribution and study how it relates to the distance to the centre of the Galaxy. Considering that galactic formation via monolithic collapse is expected to be symmetrical, we probe asymmetries and how distance uncertainty values modify them. Spatial velocities and a Galactic potential are used to verify if any asymmetries in the spatial distribution are due to co-moving objects, or if they are merely transient effects.

Page generated in 0.0812 seconds