• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 14
  • 14
  • 14
  • 11
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY

Harris, William E., Ciccone, Stephanie M., Eadie, Gwendolyn M., Gnedin, Oleg Y., Geisler, Douglas, Rothberg, Barry, Bailin, Jeremy 20 January 2017 (has links)
We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by similar or equal to 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] similar or equal to-2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R >= 4 R-eff, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.
2

The Distribution and Ages of Star Clusters in the Small Magellanic Cloud: Constraints on the Interaction History of the Magellanic Clouds

Bitsakis, Theodoros, González-Lópezlira, R. A., Bonfini, P., Bruzual, G., Maravelias, G., Zaritsky, D., Charlot, S., Ramírez-Siordia, V. H. 26 January 2018 (has links)
We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully automated method developed by Bitsakis et al. Our code detects 1319 star clusters in the central 18 deg(2) of the SMC we surveyed (1108 of which have never been reported before). The age distribution of those clusters suggests enhanced cluster formation around 240 Myr ago. It also implies significant differences in the cluster distribution of the bar with respect to the rest of the galaxy, with the younger clusters being predominantly located in the bar. Having used the same setup, and data from the same surveys as for our previous study of the LMC, we are able to robustly compare the cluster properties between the two galaxies. Our results suggest that the bulk of the clusters in both galaxies were formed approximately 300 Myr ago, probably during a direct collision between the two galaxies. On the other hand, the locations of the young (<= 50 Myr) clusters in both Magellanic Clouds, found where their bars join the H I arms, suggest that cluster formation in those regions is a result of internal dynamical processes. Finally, we discuss the potential causes of the apparent outside-in quenching of cluster formation that we observe in the SMC. Our findings are consistent with an evolutionary scheme where the interactions between the Magellanic Clouds constitute the major mechanism driving their overall evolution.
3

A Novel Method to Automatically Detect and Measure the Ages of Star Clusters in Nearby Galaxies: Application to the Large Magellanic Cloud

Bitsakis, T., Bonfini, P., González-Lópezlira, R. A., Ramírez-Siordia, V. H., Bruzual, G., Charlot, S., Maravelias, G., Zaritsky, D. 11 August 2017 (has links)
We present our new, fully automated method to detect and measure the ages of star clusters in nearby galaxies, where individual stars can be resolved. The method relies purely on statistical analysis of observations and Monte-Carlo simulations to define stellar overdensities in the data. It decontaminates the cluster color-magnitude diagrams and, using a revised version of the Bayesian isochrone fitting code of Ramirez-Siordia et al., estimates the ages of the clusters. Comparisons of our estimates with those from other surveys show the superiority of our method to extract and measure the ages of star clusters, even in the most crowded fields. An application of our method is shown for the high-resolution, multiband imaging of the Large Magellanic Cloud. We detect 4850 clusters in the 7 deg(2) we surveyed, 3451 of which have not been reported before. Our findings suggest multiple epochs of star cluster formation, with the most probable occurring similar to 310 Myr ago. Several of these events are consistent with the epochs of the interactions among the Large and Small Magellanic Clouds, and the Galaxy, as predicted by N-body numerical simulations. Finally, the spatially resolved star cluster formation history may suggest an inside-out cluster formation scenario throughout the LMC, for the past 1 Gyr.
4

Adaptive optic demonstrators for extremely large telescopes

Campbell, Michael Aloysius January 2011 (has links)
The next generation of ground-based optical/infrared (IR) telescopes will have primary mirrors of up to 42 m. To take advantage of the large potential increase in angular resolution, adaptive optics will be essential to overcome the resolution limits set by atmospheric turbulence. Novel techniques such as Multi-Conjugate Adaptive Optics (MCAO) and Multi-Object Adaptive Optics (MOAO) are being developed to achieve near diffraction-limited images over large fields-of-view. This thesis concerns the development of MCAO and MOAO pathfinders. Specifically, the construction of CANARY, aMOAO demonstrator, and the on-sky performance and scientific exploitation of the Multi-conjugate Adaptive optics Demonstrator (MAD). CANARY is under construction for the William Herschel Telescope (WHT) in La Palma and contains a telescope simulator to allow testing of the set-up in the laboratory. The simulator contains a natural guide star emulator, turbulence phase screens, and telescope relay optics. The work presented here concerns the integration of the various components in relation to numerical models and the CANARY specifications. MAD was a near-IR imager on the Very Large Telescope (VLT) in Chile. Science demonstration observations were taken of R136, the young, massive cluster situated in the 30 Doradus star-forming region in the Large Magellanic Cloud. These data were used here to determine the MCAO performance across the ~1’x1’ field-of-view, for different pointings with respect to the guide stars, finding high Strehl ratios and relatively uniform corrections across the fields. The MAD data are then used to construct radial surface brightness profiles for R136, providing new insights into intriguing past results from the Hubble Space Telescope. The MAD data reveal that the profile is strongly asymmetric, removing the need for dramatic dynamical evolution of the cluster in the recent past, and highlighting the importance of considering asymmetries when analysing clusters further afield. The MAD data, combined with other near-IR imaging from the VLT, are then used to investigate the nature of candidate young stellar objects from recent observations with the Spitzer Space Telescope.
5

Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

Adamo, A., Ryon, J. E., Messa, M., Kim, H., Grasha, K., Cook, D. O., Calzetti, D., Lee, J. C., Whitmore, B. C., Elmegreen, B. G., Ubeda, L., Smith, L. J., Bright, S. N., Runnholm, A., Andrews, J. E., Fumagalli, M., Gouliermis, D. A., Kahre, L., Nair, P., Thilker, D., Walterbos, R., Wofford, A., Aloisi, A., Ashworth, G., Brown, T. M., Chandar, R., Christian, C., Cignoni, M., Clayton, G. C., Dale, D. A., de Mink, S. E., Dobbs, C., Elmegreen, D. M., Evans, A. S., Gallagher III, J. S., Grebel, E. K., Herrero, A., Hunter, D. A., Johnson, K. E., Kennicutt, R. C., Krumholz, M. R., Lennon, D., Levay, K., Martin, C., Nota, A., Ostlin, G., Pellerin, A., Prieto, J., Regan, M. W., Sabbi, E., Sacchi, E., Schaerer, D., Schiminovich, D., Shabani, F., Tosi, M., Van Dyk, S. D., Zackrisson, E. 05 June 2017 (has links)
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes similar to-2 and a truncation of a few times 10(5) M-circle dot. After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (<= 10(4) M-circle dot) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.
6

Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

Vidal-García, A., Charlot, S., Bruzual, G., Hubeny, I. 09 1900 (has links)
We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (similar to 10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.
7

The young star cluster population of M51 with LEGUS – I. A comprehensive study of cluster formation and evolution

Messa, M., Adamo, A., Östlin, G., Calzetti, D., Grasha, K., Grebel, E. K., Shabani, F., Chandar, R., Dale, D. A., Dobbs, C. L., Elmegreen, B. G., Fumagalli, M., Gouliermis, D. A., Kim, H., Smith, L. J., Thilker, D. A., Tosi, M., Ubeda, L., Walterbos, R., Whitmore, B. C., Fedorenko, K., Mahadevan, S., Andrews, J. E., Bright, S. N., Cook, D. O., Kahre, L., Nair, P., Pellerin, A., Ryon, J. E., Ahmad, S. D., Beale, L. P., Brown, K., Clarkson, D. A., Guidarelli, G. C., Parziale, R., Turner, J., Weber, M. 01 1900 (has links)
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 +/- 0.12 x 10(5) M-circle dot . Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 x 10(4) M-circle dot over this age range. The fraction of star formation happening in the form of bound clusters in M51 is similar to 20 per cent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.
8

Star Clusters in the Interacting Galaxy System Arp 284

Peterson, Bradley W., Struck, Curtis, Smith, Beverly J., Hancock, Mark 01 December 2009 (has links)
We present results from a study of protoglobular cluster candidates in the interacting galaxy system Arp 284 (NGC 7714/5) using data from the Hubble Space Telescope (HST). Previous studies of the Antennae and M51 have suggested that the majority of young massive star clusters dissolve within 20 Myr due to mass loss. We use the evolutionary synthesis code starburst99 to estimate ages and extinctions for approximately 175 clusters visible with HST. We also use lower resolution Galaxy Evolution Explorer and ground-based Hα data to estimate the ages of the giant H ii regions in which these clusters are found, and compare the Spitzer colours of these H ii regions to those of star-forming regions in other interacting systems. The ages are also used to aid in the interpretation of Chandra X-ray data. Clusters in the tidal tails of NGC 7714 are generally found to have ages less than 20 Myr, though observational limits make the significance of this result uncertain. Older clusters, though not numerous, have nearly the same spatial distribution within the imaged portion of NGC 7714 as young clusters. The cluster population in the bridge connecting the two galaxies appears to be older, but the data in this part of the system are too limited to draw firm conclusions. The ages of the giant H ii regions in NGC 7714 are generally older than those of their constituent clusters, possibly indicating that the young clusters we detect are surrounded by their dispersed predecessors.
9

An Assessment of Broad-Band Optical Colours as Age Indicators for Star Clusters

Hancock, M., Smith, B. J., Giroux, M. L., Struck, C. 01 September 2008 (has links)
We present an empirical assessment of the use of broad-band optical colours as age indicators for unresolved extragalactic clusters and investigate stochastic sampling effects on integrated colours. We use the integrated properties of Galactic open clusters (OCs) as models for unresolved extragalactic clusters. The population synthesis code Starburst99 (SB99) and four optical colours were used to estimate how well we can recover the ages of 62 well-studied Galactic OCs with published ages. We provide a method for estimating the ages of unresolved clusters and for reliably determining the uncertainties in the age estimates. Our results support earlier conclusions based on comparisons to synthetic clusters, namely the (U - B) colour is critical to the estimation of the ages of star-forming regions. We compare the observed optical colours with those obtained from SB99 using the published ages and get good agreement. The scatter in the (B - V)observed - (B - V)model is larger for lower luminosity clusters, perhaps due to stochastic effects.
10

Ngc 4314. IV. Photometry of Star Clusters With the Hubble Space Telescope: History of Star Formation in the Vicinity of a Nuclear Ring

Benedict, G. Fritz, Andrew Howell, D., Jørgensen, Inger, Kenney, Jeffrey D.P., Smith, Beverly J. 01 March 2002 (has links)
Using Hubble Space Telescope (HST) WFPC2 images, we have obtained U, B, V, I, and Ha photometry for 76 star clusters in the nuclear star-forming ring of the barred spiral galaxy NGC 4314. These clusters are likely associated with an inner inner Lindblad resonance (IILR). The blue colors and Ha emission for most of these clusters imply very young ages of 1-15 Myr. Age estimates based on several reddening-free parameters indicate that the present epoch of star formation has lasted at least 30 Myr. By estimating the masses of stars in the clusters and comparing with the Ha luminosity, we conclude that a significant fraction of ongoing star formation in the nuclear ring of NGC 4314 occurs in clusters. The cluster masses identify these as young open clusters, not young globular clusters. Farther out in the galaxy, just exterior to the ring of young stars, previous ground-based observations revealed two symmetric stellar spiral arms that may be associated with an outer inner Lindblad resonance (OILR). With our HST data, we have revealed part of this structure and its colors in more detail. The spiral arm colors are consistent with stellar ages between 40 and 200 Myr. The age difference between the inner ring of young stars (IILR) and the larger oval-like feature containing the blue arms (OILR) supports an interpretation of the morphology of the nuclear region of NGC 4314 that requires a reservoir of gas that becomes more compact over time. We speculate that as the gas distribution becomes more centrally concentrated, it interacts with these two resonances. Each resonance triggers star formation, resulting in two distinct epochs of star formation.

Page generated in 0.1076 seconds