• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

Vidal-García, A., Charlot, S., Bruzual, G., Hubeny, I. 09 1900 (has links)
We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (similar to 10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.
2

Highly Ionized High-Velocity Clouds Toward PKS 2155-304 and Markarian 509

Collins, Joseph A., Shull, J. Michael, Giroux, Mark L. 10 April 2004 (has links)
To gain insight into four highly ionized high-velocity clouds (HVCs) discovered by Sembach et al., we have analyzed data from the Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer (FUSE) for the PKS 2155-304 and Mrk 509 sight lines. We measure strong absorption in O VI and column densities of multiple ionization stages of silicon (Si II, III, and IV) and carbon (C II, III, and IV). We interpret this ionization pattern as a multiphase medium that contains both collisionally ionized and photoionized gas. Toward PKS 2155-304, for HVCs at -140 and -270 km s-1, respectively, we measure logN(O VI) = 13.80 ± 0.03 and logN(O VI) = 13.56 ± 0.06; from Lyman series absorption, we find logN(H I) = 16.37 -0.14+0.22 and 15.23-0.22+0.38. The presence of high-velocity O VI spread over a broad (100 km s-1) profile, together with large amounts of low-ionization species, is difficult to reconcile with the low densities, ne ≈ 5 × 10-6 cm-3, in the collisional/photoionization models of Nicastro et al., although the HVCs show a similar relation in N(Si IV)/N(C IV) versus N(C II)/N(C IV) to that of high-z intergalactic clouds. Our results suggest that the high-velocity O VI in these absorbers does not necessarily trace the warm-hot intergalactic medium but instead may trace HVCs with low total hydrogen column density. We propose that the broad high-velocity O VI absorption arises from shock ionization, at bow shock interfaces produced from infalling clumps of gas with velocity shear. The similar ratios of high ions for HVC Complex C and these highly ionized HVCs suggest a common production mechanism in the Galactic halo.

Page generated in 0.0187 seconds