• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 3
  • Tagged with
  • 80
  • 80
  • 80
  • 42
  • 29
  • 18
  • 16
  • 15
  • 15
  • 15
  • 14
  • 11
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.


Ma, Jingzhe, Gonzalez, Anthony. H., Vieira, J. D., Aravena, M., Ashby, M. L. N., Béthermin, M., Bothwell, M. S., Brandt, W. N., Breuck, C. de, Carlstrom, J. E., Chapman, S. C., Gullberg, B., Hezaveh, Y., Litke, K., Malkan, M., Marrone, D. P., McDonald, M., Murphy, E. J., Spilker, J. S., Sreevani, J., Stark, A. A., Strandet, M., Wang, S. X. 22 November 2016 (has links)
We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (similar to 4500 M-circle dot yr(-1)) and SFR surface density Sigma(SFR) (similar to 2000 M-circle dot yr(-1) kpc(-2)) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 +/- 0.3) x 10(13) L-circle dot originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 +/- 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Sigma(SFR) of any known galaxy. This high Sigma(SFR), which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

Discovery of an Enormous Ly α Nebula in a Massive Galaxy Overdensity at z = 2.3

Cai, Zheng, Fan, Xiaohui, Yang, Yujin, Bian, Fuyan, Prochaska, J. Xavier, Zabludoff, Ann, McGreer, Ian, Zheng, Zhen-Ya, Green, Richard, Cantalupo, Sebastiano, Frye, Brenda, Hamden, Erika, Jiang, Linhua, Kashikawa, Nobunari, Wang, Ran 03 March 2017 (has links)
Enormous Ly alpha nebulae (ELANe), unique tracers of galaxy density peaks, are predicted to lie at the nodes and intersections of cosmic filamentary structures. Previous successful searches for ELANe have focused on wide-field narrowband surveys or have targeted known sources such as ultraluminous quasi-stellar objects (QSOs) or radio galaxies. Utilizing groups of coherently strong Ly alpha absorptions, we have developed a new method to identify high-redshift galaxy overdensities and have identified an extremely massive overdensity, BOSS1441, at z = 2-3. In its density peak, we discover an ELAN that is associated with a relatively faint continuum. To date, this object has the highest diffuse Ly alpha nebular luminosity of L-nebula = 5.1 +/- 0.1 x 10(44) erg s(-1). Above the 2 sigma surface brightness limit of SBLy alpha = 4.8 x 10(-18) erg s(-1) cm(-2) arcsec(-2), this nebula has an end-to-end spatial extent of 442 kpc. This radio-quiet source also has extended C IV lambda 1549 and He II lambda 1640 emission on greater than or similar to 30 kpc scales. Note that the Ly alpha, He II, and C IV emissions all have double-peaked line profiles. Each velocity component has an FWHM of approximate to 700-1000 km s(-1). We argue that this Lya nebula could be powered by shocks due to an active galactic nucleus-driven outflow or photoionization by a strongly obscured source.

Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

Cai, Zheng, Fan, Xiaohui, Dave, Romeel, Finlator, Kristian, Oppenheimer, Ben 26 October 2017 (has links)
We test the galactic outflow model by probing associated galaxies of four strong intergalactic C IV absorbers at z = 5-6 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C IV absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N-C IV = 10(13.8) to 10(14.8) cm(-2). At z = 5.74, we detect an i-dropout Ly alpha emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C IV absorber. This LAE candidate has a Ly alpha-based star formation rate (SFRLy alpha) of 2 M-circle dot yr(-1) and a UV-based SFR of 4 M-circle dot yr(-1). Although we cannot completely rule out that this i-dropout emitter may be an [O II] interloper, its measured properties are consistent with the C IV powered galaxy at z = 5.74. For C IV absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 sigma upper limit of SFRLy alpha approximate to 1.5 M-circle dot yr(-1). In summary, in these four cases, we only detect one plausible C IV source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFRLy alpha less than or similar to 2 M-circle dot yr(-1)) are main sources of intergalactic C IV absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z greater than or similar to 5.

Physical Properties of 15 Quasars at z ≳ 6.5

Mazzucchelli, C., Bañados, E., Venemans, B. P., Decarli, R., Farina, E. P., Walter, F., Eilers, A.-C., Rix, H.-W., Simcoe, R., Stern, D., Fan, X., Schlafly, E., Rosa, G. De, Hennawi, J., Chambers, K. C., Greiner, J., Burgett, W., Draper, P. W., Kaiser, N., Kudritzki, R.-P., Magnier, E., Metcalfe, N., Waters, C., Wainscoat, R. J. 06 November 2017 (has links)
Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only a few quasars have been reported at z > 6.5 (< 800 Myr after the big bang). In this work, we present six additional z greater than or similar to 6.5 quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 z greater than or similar to 6.5 quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of z greater than or similar to 6.5 quasars show large blueshifts of the broad C IV lambda 1549 emission line compared to the systemic redshift of the quasars, with a median value similar to 3x higher than a quasar sample at z similar to 1; (2) we estimate the quasars' black hole masses (M-BH similar to (0.3-5) x. 10(9) M circle dot) via modeling of the Mg II lambda 2798 emission line and rest-frame UV continuum and find that quasars at high redshift accrete their material (with <(Lbol L-Edd)> = 0.39) at a rate comparable to a luminosity-matched sample at lower redshift, albeit with significant scatter (0.4 dex); (3) we recover no evolution of the Fe II/Mg II abundance ratio with cosmic time; and (4) we derive near-zone sizes and, together with measurements for z similar to 6 quasars from recent work, confirm a shallow evolution of the decreasing quasar near-zone sizes with redshift. Finally, we present new millimeter observations of the [C II] 158 mu m emission line and underlying dust continuum from NOEMA for four quasars and provide new accurate redshifts and [C II]/infrared luminosity estimates. The analysis presented here shows the large range of properties of the most distant quasars.


Spilker, Justin S., Bezanson, Rachel, Marrone, Daniel P., Weiner, Benjamin J., Whitaker, Katherine E., Williams, Christina C. 14 November 2016 (has links)
Early quiescent galaxies at z similar to 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z similar to 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions. greater than or similar to 5 times lower and gas depletion timescales. greater than or similar to 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z > 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H-2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z similar to 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.

High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays

Volonteri, Marta, Reines, Amy E., Atek, Hakim, Stark, Daniel P., Trebitsch, Maxime 10 November 2017 (has links)
The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages <1 Gyr, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.

High redshift star-forming galaxies in absorption and emission

Quider, Anna Marie January 2011 (has links)
Galaxies in the redshift range 1 < z < 3 existed during the most vigorous period of star formation in the history of the Universe. In the past 15 years, large rest-frame UV spectroscopic samples of z ~ 3 star-forming galaxies have been assembled. However, this particular redshift range, the so-called Redshift Desert, has only begun to be characterized. Most studies involve low resolution, low signal-to-noise spectra because the small angular size (δ ≤ 1") and faintness (RAB = 24 - 25.5) of high redshift galaxies limit what can be accomplished with a reasonable investment of observing time, even using the world's largest optical telescopes. One way to circumvent these two issues is to study gravitationally lensed galaxies. The magnification boost (up to a factor of 30x) and morphological distortion of a high redshift galaxy by an intervening mass concentration allow for the study of the high redshift Universe in unprecedented detail. I present a detailed analysis of the rest-UV spectrum of two gravitationally lensed galaxies: the 'Cosmic Horseshoe' (zsys = 2.38115) and the 'Cosmic Eye' (zsys = 3.07331). The characterization of the stellar populations and the interstellar gas geometry, kinematics, and composition which I achieve is a preview of the type of information that will be available for unlensed high redshift galaxies with the next generation of optical telescopes. I probe the lower redshift end of the Redshift Desert with a study of Fe ii and Mg ii features in the rest-frame near-UV spectrum of 96 star-forming galaxies in the redshift range 1 < z < 2. Stacked spectra are used to explore average outflow and line profile trends with stellar mass and reddening. I also investigate the phenomenon of emission filling of absorption lines which has implications for the line strength and velocity offset of interstellar absorption lines. Individual galaxies are used to assess the range of outflow velocities as well as the prevalence of emission filling in galaxies from this epoch. This is the first large scale study of fine-structure emission from Feii in high redshift galaxies, both in stacked and individual galaxy spectra. An alternative to investigating galaxies by collecting their light is to study them as seen in absorption against a cosmic backlight, such as a quasar. The Sloan Digital Sky Survey, an imaging and spectroscopic survey which covers about one-quarter of the night sky, has collected many thousands of quasar spectra. I search ~ 44,600 of these spectra, up through Data Release 4, for Mg ii λλ2796,2803 absorption doublets. The final catalog includes ~ 16700 Mgii absorption line systems in the redshift range 0.36 ≤ z ≤ 2.28. Measurements of the absorption redshift and rest equivalent widths of the Mg ii doublet as well as select metal lines are available in the catalog. This is the largest publicly available catalog of its kind and its combination of large size and well understood statistics make it ideal for precision studies of the low-ionization and neutral gas regions of galaxies. I conclude this thesis by suggesting several avenues for extending the studies of high redshift star-forming galaxies presented herein.


Yang, Jinyi, Wang, Feige, Wu, Xue-Bing, Fan, Xiaohui, McGreer, Ian D., Bian, Fuyan, Yi, Weimin, Yang, Qian, Ai, Yanli, Dong, Xiaoyi, Zuo, Wenwen, Green, Richard, Jiang, Linhua, Wang, Shu, Wang, Ran, Yue, Minghao 20 September 2016 (has links)
This is the second paper in a series on a new luminous z similar to 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z similar to 5. Combining. our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z similar to 5 quasar sample to date, with 99 quasars in the range of 4.7 <= z < 5.4 and -29 < M-1450 <= -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/V-a method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as alpha = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope beta = -3.58 +/- 0.24 and a fainter break magnitude M-1450(*) = -26.98 +/- 0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a luminosity evolution and density evolution model. Using the best-fit QLF, the contribution of quasars to the ionizing background at z similar to 5 is found to be 18%-45% with a clumping factor C of 2-5. Our sample suggests an evolution of radio loud fraction with optical luminosity but no obvious evolution with redshift.

Discovery of 16 New z ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection

Yang, Jinyi, Fan, Xiaohui, Wu, Xue-Bing, Wang, Feige, Bian, Fuyan, Yang, Qian, McGreer, Ian D., Yi, Weimin, Jiang, Linhua, Green, Richard, Yue, Minghao, Wang, Shu, Li, Zefeng, Ding, Jiani, Dye, Simon, Lawrence, Andy 30 March 2017 (has links)
We present initial results from the first systematic survey of luminous z similar to 5.5 quasars. Quasars at z similar to 5.5, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium, quasar evolution, and the early super-massive black hole growth. However, it has been very challenging to select quasars at redshifts 5.3 <= z <= 5.7 using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distributions. We develop a new selection technique for z similar to 5.5 quasars based on optical, near-IR, and mid-IR photometric data from Sloan Digital Sky Survey (SDSS), UKIRT InfraRed Deep Sky Surveys-Large Area Survey (ULAS), VISTA Hemisphere Survey (VHS), and Wide Field Infrared Survey Explorer. From our pilot observations in the SDSS-ULAS/VHS area, we have discovered 15 new quasars at 5.3. z. 5.7 and 6 new lower redshift quasars, with SDSS z band magnitude brighter than 20.5. Including other two z similar to 5.5 quasars already published in our previous work, we now construct a uniform quasar sample at 5.3 <= z <= 5.7, with 17 quasars in a similar to 4800 square degree survey area. For further application in a larger survey area, we apply our selection pipeline to do a test selection by using the new wide field J-band photometric data from a preliminary version of the UKIRT Hemisphere Survey (UHS). We successfully discover the first UHS selected z similar to 5.5 quasar.

Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift ∼1.2:Massive Compact Galaxies Are Older than More Extended Ones

Williams, Christina C., Giavalisco, Mauro, Bezanson, Rachel, Cappelluti, Nico, Cassata, Paolo, Liu, Teng, Lee, Bomee, Tundo, Elena, Vanzella, Eros 30 March 2017 (has links)
We report the detection of morphology-dependent stellar age in massive quenched galaxies (QGs) at z similar to 1.2. The sense of the dependence is that compact QGs are 0.5-2 Gyr older than normal-sized ones. The evidence comes from three different age indicators-D(n)4000, H-delta, and fits to spectral synthesis models-applied to their stacked optical spectra. All age indicators consistently show that the stellar populations of compact QGs are older than those of their normal-sized counterparts. We detect weak [O II] emission in a fraction of QGs, and the strength of the line, when present, is similar between the two samples; however, compact galaxies exhibit a. significantly lower frequency of [O II] emission than normal ones. Fractions of both samples are individually detected in 7Ms Chandra X-ray images (luminosities similar to 10(40) - 10(41) erg s(-1)). The 7Ms stacks of nondetected galaxies show similarly low luminosities in the soft band only, consistent with a hot gas origin for the X-ray emission. While both [O II] emitters and nonemitters are also X-ray sources among normal galaxies, no compact galaxy with [O II] emission is an X-ray source, arguing against an active galactic nucleus (AGN) powering the line in compact galaxies. We interpret the [O II] properties as further evidence that compact galaxies are older and further along in. the process of quenching star formation and suppressing gas accretion. Finally, we argue that the older age of compact QGs is evidence of progenitor bias: compact QGs simply reflect the smaller sizes of galaxies at their earlier quenching epoch, with stellar density most likely having nothing directly to do with cessation of star formation.

Page generated in 0.0842 seconds