• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 16
  • 14
  • 14
  • 10
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A complete census of Herschel-detected infrared sources within the HST Frontier Fields

Rawle, T. D., Altieri, B., Egami, E., Pérez-González, P. G., Boone, F., Clement, B., Ivison, R. J., Richard, J., Rujopakarn, W., Valtchanov, I., Walth,  G., Weiner, B. J., Blain, A. W., Dessauges-Zavadsky, M., Kneib, J.-P., Lutz, D., Rodighiero,  G., Schaerer, D., Smail, I. 21 June 2016 (has links)
We present a complete census of all Herschel-detected sources within the six massive lensing clusters of the HST Frontier Fields (HFF). We provide a robust legacy catalogue of 263 sources with Herschel fluxes, primarily based on imaging from the Herschel Lensing Survey and PEP/HerMES Key Programmes. We optimally combine Herschel, Spitzer and WISE infrared (IR) photometry with data from HST, VLA and ground-based observatories, identifying counterparts to gain source redshifts. For each Herschel-detected source we also present magnification factor (mu), intrinsic IR luminosity and characteristic dust temperature, providing a comprehensive view of dust-obscured star formation within the HFF. We demonstrate the utility of our catalogues through an exploratory overview of the magnified population, including more than 20 background sub-LIRGs unreachable by Herschel without the assistance gravitational lensing.
2

The ultraviolet and infrared star formation rates of compact group galaxies: an expanded sample

Lenkić, Laura, Tzanavaris, Panayiotis, Gallagher, Sarah C., Desjardins, Tyler D., Walker, Lisa May, Johnson, Kelsey E., Fedotov, Konstantin, Charlton, Jane, Hornschemeier, Ann E., Durrell, Pat R., Gronwall, Caryl 01 July 2016 (has links)
Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 mu m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 mu m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-'red'), also have bluer UV colours, higher specific SFRs, and tend to lie in H I-rich groups, while galaxies that are MIR-inactive (MIR-'blue') have redder UV colours, lower specific SFRs, and tend to lie in H I-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M-circle dot yr(-1), indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.
3

The AGN–Star Formation Connection: Future Prospects with JWST

Kirkpatrick, Allison, Alberts, Stacey, Pope, Alexandra, Barro, Guillermo, Bonato, Matteo, Kocevski, Dale D., Pérez-González, Pablo, Rieke, George H., Rodríguez-Muñoz, Lucia, Sajina, Anna, Grogin, Norman A., Mantha, Kameswara Bharadwaj, Pandya, Viraj, Pforr, Janine, Salvato, Mara, Santini, Paola 07 November 2017 (has links)
The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z = 1-2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 mu m counts of SFGs, AGN/star-forming "Composites," and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 mu m, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z similar to 1-2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 mu m PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by similar to 35% for cases where the AGN provides half the IR luminosity and similar to 50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of lambda(Edd) similar to 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.
4

VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

Rujopakarn, W., Dunlop, J. S., Rieke, G. H., Ivison, R. J., Cibinel, A., Nyland, K., Jagannathan, P., Silverman, J. D., Alexander, D. M., Biggs, A. D., Bhatnagar, S., Ballantyne, D. R., Dickinson, M., Elbaz, D., Geach, J. E., Hayward, C. C., Kirkpatrick, A., McLure, R. J., Michałowski, M. J., Miller, N. A., Narayanan, D., Owen, F. N., Pannella, M., Papovich, C., Pope, A., Rau, U., Robertson, B. E., Scott, D., Swinbank, A. M., Werf, P. van der, Kampen, E. van, Weiner, B. J., Windhorst, R. A. 01 December 2016 (has links)
We present; 0 4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z. =. 1.3-3.0. These galaxies are selected from sensitive blank-field surveys of the 2 x 2' Hubble Ultra-Deep Field at gimel = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z similar to 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z similar to 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 similar to 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5Me circle dot yr(-1) kpc(-2), sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinctionindependent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3-8 times larger, providing a constraint on the characteristic SFR (similar to 300Me yr(-1)) above which a significant population of more compact SFGs appears to emerge.
5

ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS

Spilker, J. S., Marrone, D. P., Aravena, M., Béthermin, M., Bothwell, M. S., Carlstrom, J. E., Chapman, S. C., Crawford, T. M., Breuck, C. de, Fassnacht, C. D., Gonzalez, A. H., Greve, T. R., Hezaveh, Y., Litke, K., Ma, J., Malkan, M., Rotermund, K. M., Strandet, M., Vieira, J. D., Weiss, A., Welikala, N. 26 July 2016 (has links)
The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0."5 resolution 870 mu m. Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z = 1.9-5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies (mu(870) (mu m) > 2), with a median magnification of mu(870) (mu m) = 6.3, extending to mu(870) (mu m) > 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C II] line and the far-infrared luminosity and find that the same correlation between the [C II]/L-FIR. ratio and Sigma(FIR). found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in SFIR. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the "[C II] deficit."
6

SCUSS u-BAND EMISSION AS A STAR-FORMATION-RATE INDICATOR

Zhou, Zhimin, Zhou, Xu, Wu, Hong, Fan, Xiao-Hui, Fan, Zhou, Jiang, Zhao-Ji, Jing, Yi-Peng, Li, Cheng, Lesser, Michael, Jiang, Lin-Hua, Ma, Jun, Nie, Jun-Dan, Shen, Shi-Yin, Wang, Jia-Li, Wu, Zhen-Yu, Zhang, Tian-Meng, Zou, Hu 19 January 2017 (has links)
We present and analyze the possibility of using optical u-band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u. band Sky Survey (SCUSS), which provides a deep u-band photometric survey covering about 5000 deg(2) of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the. BPT diagram, we explore the correlations between u-band, H alpha, and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer (WISE). The attenuation-corrected u-band luminosities are tightly correlated with the Balmer decrement-corrected Ha luminosities with an rms scatter of similar to 0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u-band luminosities and WISE. 12 (or 22) mu m luminosities, and then calibrated with the Balmer-corrected Ha luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore,. a. more detailed analysis is needed in future work.
7

Star formation in galaxies : from the epoch of re-ionisation to the present day

Hickey, Samantha January 2012 (has links)
In this thesis, I explore both obscured and unobscured star formation over a large fraction of cosmic time. I use the HAWK-I Y -band science verification data over GOODS-South, in conjunction with optical and infrared data to search for Lyman-break galaxies at z >∼ 6.5 (i.e. within the first billion years of the Universe). I find four possible (two robust) z′-drop candidates (z >∼ 6.5) and four possible (but no robust) Y -drop candidates (z >∼ 7). I use my results to place constraints on the luminosity function at z ∼ 6.5 and find significant evolution in the population of Lyman-break galaxies between 3 < z <∼ 6.5. I also explore obscured star formation with a population of 70μm selected galaxies over the COSMOS field. I use AAT spectroscopy in conjunction with other available spectroscopic redshifts for my sample, and photometric redshifts otherwise, to calculate the total infrared luminosity of each galaxy. Two libraries of spectral energy distributions are considered; Siebenmorgen & Krügel (2007) templates and Chary & Elbaz (2001) models. We have supplemented our data with that of Huynh et al. (2007) collected over the GOODS-North field and adapted it to directly compare with the results of this work. The far-infrared luminosity function is then determined using the 1/Vmax technique. A double power law parameterisation is found to provide the best fit to the data. The far-infrared luminosity function was fitted for all parameters and the evolution was measured out to z ∼ 1. Three different types of evolution were allowed, pure luminosity, pure density and luminosity dependent density evolution. In all cases strong positive evolution was evident with the best-fit case being pure luminosity evolution where p = 2.4+0.6 −0.7. Due to the larger volume surveyed compared to previous studies, this work provides better constraints on the bright end of the far-infrared luminosity function displaying a shallower bright end slope (α2 ∼ −1.6) than previously determined, implying a higher number density of the most luminous objects and thereby a greater contribution from these objects to the total infrared energy density. However the shallower slope determined here can be reconciled with other work if the Chary & Elbaz (2001) models are used instead of the Siebenmorgen & Krügel templates; demonstrating that spectral energy distribution model selection is a key component in determining luminosity functions at far-infrared wavelengths. The far-infrared–radio correlation (FIRC; qIR) was determined for the sample of 70μm selected star-forming galaxies using 1.4GHz radio data over the COSMOS field, and no evolution was found out to z ∼ 2. The 70μm monochromatic evolution in the FIRC was also examined (q70) and no evolution was found in this parameter with redshift.
8

ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ∼ 7

Strandet, M. L., Weiss, A., Breuck, C. De, Marrone, D. P., Vieira, J. D., Aravena, M., Ashby, M. L. N., Béthermin, M., Bothwell, M. S., Bradford, C. M., Carlstrom, J. E., Chapman, S. C., Cunningham, D. J. M., Chen, Chian-Chou, Fassnacht, C. D., Gonzalez, A. H., Greve, T. R., Gullberg, B., Hayward, C. C., Hezaveh, Y., Litke, K., Ma, J., Malkan, M., Menten, K. M., Miller, T., Murphy, E. J., Narayanan, D., Phadke, K. A., Rotermund, K. M., Spilker, J. S., Sreevani, J. 15 June 2017 (has links)
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z = 6.900 +/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [C I](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and[C II] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [C I] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of M-gas = 3.3 +/- 1.9 x 10(11) M-circle dot. Its large mass and intense star formation is very rare for a source well into the epoch of reionization.
9

Welcome to the Twilight Zone: The Mid-infrared Properties of Post-starburst Galaxies

Alatalo, Katherine, Bitsakis, Theodoros, Lanz, Lauranne, Lacy, Mark, Brown, Michael J. I., French, K. Decker, Ciesla, Laure, Appleton, Philip N., Beaton, Rachael L., Cales, Sabrina L., Crossett, Jacob, Falcón-Barroso, Jesús, Kelson, Daniel D., Kewley, Lisa J., Kriek, Mariska, Medling, Anne M., Mulchaey, John S., Nyland, Kristina, Rich, Jeffrey A., Urry, C. Meg 26 June 2017 (has links)
We investigate the optical and Wide-field Survey Explorer (WISE) colors of "E+A" identified post-starburst galaxies, including a deep analysis of 190 post-starbursts detected in the 2 mu m All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone. Furthermore, we find that post-starbursts occupy a distinct region of [3.4]-[4.6] versus [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broadband photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that the mid-infrared (4-12 mu m) properties of post-starbursts are consistent with either 11.3 mu m polycyclic aromatic hydrocarbon emission, or thermally pulsating asymptotic giant branch (TP-AGB) and post-AGB stars. The composite SED of extended post-starburst galaxies with 22 mu m emission detected with signal-to-noise ratio >= 3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22 mu m. The composite SED of WISE. 22 mu m non-detections (S/N < 3), created by stacking 22 mu m images, is also flat, requiring a hot dust component. The most likely source of the mid-infrared emission of these E+A galaxies is a buried active galactic nucleus (AGN). The inferred upper limits to the Eddington ratios of post-starbursts are 10(-2)-10(-4), with an average of 10(-3). This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections capable of identifying AGNs as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.
10

The interplay between stellar feedback and galactic environment in molecular clouds

Rey Raposo, Ramon January 2015 (has links)
In this thesis we address the problem of understanding the star formation process in giant molecular clouds in a galactic context. Most simulations of molecular clouds to date use an oversimplified set of initial conditions (turbulent spheres/boxes or colliding flows). Full galactic scale models are able to generate molecular clouds with complex morphologies and velocity fields but they fail to reproduce in detail the effects that occur at sub-pc scales (e.g. stellar feedback). Our goal is to build the bridge between these two scenarios, and to model the star formation process in molecular clouds produced in a galactic context. We extract our molecular clouds from full-scale galactic simulations, hence we need to increase the resolution by two orders of magnitude. We introduce the details of the program used to simulate molecular clouds in Chapter 2, and describe in detail the method we follow to increase the resolution of the galactic clouds. In Chapter 3 we compare our simulated galactic clouds with the more conventional approach of using turbulent spheres. We create turbulent spheres to match the virial state of three galactic clouds. We perform isothermal simulations and find that the velocity field inherited from the full-scale galactic simulations plays an important role in the star formation process. Clouds affected by strong galactic shear produce less stars compared with clouds that are compressed. We define (and test) a set of parameters to characterise the dynamical state of our clouds. To include stellar feedback in our simulations we need to introduce a cooling/heating algorithm. In Chapter 4 we analyse how the different velocity fields of our clouds change the temperature distribution even in the absence of feedback. To study the formation of molecules we need to model the chemistry of H2 in our clouds. We also add CO chemistry, and produce synthetic observations of our clouds. The effect of feedback from winds and supernovae in galactic clouds is studied in Chapter 5. We analyse the effect of winds in clouds with very different velocity fields. We find that the effect of winds is stronger in highly virialised, high star forming clouds, with clouds with weak galactic shear, compared to unbound shear-dominated clouds. The steady and continuous action of the winds appears to have a greater effect than the supernovae. In summary, the inherited properties from the galaxy have an impact on many relevant processes in star formation, influencing gravitational collapse, the formation of filamentary structures, the temperature field of the cloud, and have a considerable effect on the impact of feedback in the clouds.

Page generated in 0.1417 seconds