• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radiative transfer in spherical circumstellar dust envelopes

Apruzese, John Patrick, January 1974 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1974. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

Dust production by evolved stars in the Local Group

Jones, Olivia Charlotte January 2013 (has links)
Stars on the asymptotic giant branch (AGB) lose a significant fraction of their mass to their surroundings through stellar winds. As a result, they are surrounded by circumstellar shells of gas and dust. This stellar mass loss replenishes and enriches the interstellar medium (ISM) with the products of stellar nucleosynthesis, progressively increasing its metallicity and thereby driving galactic chemical evolution. In this thesis I present a comprehensive study of oxygen-rich (O-rich) AGB stars and red supergiants (RSG) observed with the Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters; focusing on the composition of the dust in the circumstellar envelopes surrounding these stars. Combining spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates, I detect crystalline silicates in stars with dust mass-loss rates which span over a factor of 1000, down to rates of ~10^{-9} Msun/yr. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, and our results indicate that the dust mass-loss rate has a greater influence on the crystalline fraction than the gas mass-loss rate, suggesting that thermal annealing of amorphous silicate grains is the primary formation mechanism of crystalline silicates in such environments rather than the direct condensation of crystalline silicates from the gas phase. I also find that metallicity influences the composition of crystalline silicates, with enstatite seen increasingly at low metallicity, while forsterite becomes depleted at these metallicities due to the different chemical composition of the gas. To trace the evolution of alumina and silicate dust along the AGB, I present an alternative grid of MODUST radiative transfer-models for a range of dust compositions, mass-loss rates, dust shell inner radii and stellar parameters. Our analysis shows that the AKARI [11]-[15] versus [3.2]-[7] colour is a robust indicator of the fractional abundance of alumina in O-rich AGB stars. From the modelling, I show that a grain mixture consisting primarily of amorphous silicates, with contributions from amorphous alumina and metallic iron provides a good fit to the observed spectra of O-rich AGB stars in the LMC. In agreement with previous studies, we find a correlation between the dust composition and mass-loss rate; the lower the mass-loss rate the higher the percentage of alumina in the shell. Finally, I present mid-infrared observations of the Local Group dwarf elliptical galaxy M32; where I find a large population of dust-enshrouded stars. These observations will act as a pathfinder for future observations with the JWST and SPICA.
3

Záření v hvězdných větrech / Radiation in stellar winds. Resonance line formation in inhomogeneous hot star winds

Šurlan, Brankica January 2012 (has links)
Title: Radiation in stellar winds. Resonance line formation in inhomogeneous hot star winds Author: M.Sc. Brankica Šurlan Department: Astronomical Institute of the Academy of Sciences of the Czech Republic Supervisor: RNDr. Jiří Kubát, CSc., Astronomical Institute of the Academy of Sciences of the Czech Republic Abstract: To incorporate the three-dimensional (3-D) nature of stellar wind clump- ing into radiative transfer calculations, in this thesis a newly developed full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds is presented and used to investigate how different model parameters influence reso- nance line formation. Realistic 3-D models that describe the dense as well as the rarefied wind components are used to model the formation of resonance lines in a clumped stellar wind. Non-monotonic velocity fields are accounted for as well. It is shown that the 3-D density and velocity wind inhomogeneities have very strong impact on the resonance line formation. The models show that the line opacity is lower for a larger clump separation and shallower velocity gradients within the clumps. They also demonstrate that to obtain empirically correct mass-loss rates from UV resonance lines, wind clumping and its 3-D nature must be taken into account. 1

Page generated in 0.0874 seconds