• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative geomorphology of two active tectonic structures, near Oxford, North Canterbury

May, Bryce Derrick January 2004 (has links)
The North Canterbury tectonic setting involves the southward propagating margin of easterly strike-slip activity intersecting earlier thrust activity propagating east from the Alpine Fault. The resulting tectonics contain a variety of structures caused by the way these patterns overlap, creating complexities on the regional and individual feature scale. An unpublished map by Jongens et al. (1999) shows the Ashley-Loburn Fault System crossing the plains from the east connected with the Springfield Thrust Fault in the western margins, possibly the southern limit of the east-west trending strikeslip activity. Of note are two hill structures inferred to be affected by this fault system. View Hill to the west, is on the south side of this fault junction, and Starvation Hill further east, was shown lying on the north side of a left stepover restraining bend. During thrust uplift and simple tilting of the View Hill structure, at least two uplift events post date last Pleistocene aggradation accounting for variations in scarp morphology. Broad constraints on fault dip and the age of the displacement surface suggest that slip-rates are in the order of 0.5 mm/year. East from View Hill, the strike-slip fault was originally thought to curve northeast, around the southeast of Starvation Hill. But there is neither evidence of a scarp, nor other clear evidence of surface faulting at Starvation Hill, which poses the question of the extent to which folding may reflect both fault geometry and fault activity. Starvation Hill is a triangular shape, with a series of distinctive smooth, semi-planar surfaces, lapping across both sides of the hill at a range of elevations and gradients. These surfaces are thought to be remnants of old river channels, and are indicative of tilting and upwarping of the hill structure. 3D computer modelling of these surfaces, combined with studies of the cover sequence on the hill, resulted in inferences being drawn as to the location of hinge lines of a dual-hinged anticline and an overview of the tectonic history of the hill. This illustrates the potential to apply topographical and geomorphic studies to the evolution of geometrically complex structures Starvation Hill is interpreted to be the result of two fault-generated folds, one fault trending north, the other, more recent fault, trending east. These two faults are thought to be sequentially developed segments of the original fault zone inferred by Jongens et al. (1999) but with reinterpreted location and mechanism detail. The presence of two faults has resulted in overprinted differential uplift of the structure, which has been significantly degraded, especially in the southwest corner of the hill. The majority of the formation of the northerly trending structure of Starvation Hill is inferred to be pre-Otiran, with uplift of the later east trending structure continuing into the late Pleistocene and Holocene.
2

Comparative geomorphology of two active tectonic structures, near Oxford, North Canterbury

May, Bryce Derrick January 2004 (has links)
The North Canterbury tectonic setting involves the southward propagating margin of easterly strike-slip activity intersecting earlier thrust activity propagating east from the Alpine Fault. The resulting tectonics contain a variety of structures caused by the way these patterns overlap, creating complexities on the regional and individual feature scale. An unpublished map by Jongens et al. (1999) shows the Ashley-Loburn Fault System crossing the plains from the east connected with the Springfield Thrust Fault in the western margins, possibly the southern limit of the east-west trending strikeslip activity. Of note are two hill structures inferred to be affected by this fault system. View Hill to the west, is on the south side of this fault junction, and Starvation Hill further east, was shown lying on the north side of a left stepover restraining bend. During thrust uplift and simple tilting of the View Hill structure, at least two uplift events post date last Pleistocene aggradation accounting for variations in scarp morphology. Broad constraints on fault dip and the age of the displacement surface suggest that slip-rates are in the order of 0.5 mm/year. East from View Hill, the strike-slip fault was originally thought to curve northeast, around the southeast of Starvation Hill. But there is neither evidence of a scarp, nor other clear evidence of surface faulting at Starvation Hill, which poses the question of the extent to which folding may reflect both fault geometry and fault activity. Starvation Hill is a triangular shape, with a series of distinctive smooth, semi-planar surfaces, lapping across both sides of the hill at a range of elevations and gradients. These surfaces are thought to be remnants of old river channels, and are indicative of tilting and upwarping of the hill structure. 3D computer modelling of these surfaces, combined with studies of the cover sequence on the hill, resulted in inferences being drawn as to the location of hinge lines of a dual-hinged anticline and an overview of the tectonic history of the hill. This illustrates the potential to apply topographical and geomorphic studies to the evolution of geometrically complex structures Starvation Hill is interpreted to be the result of two fault-generated folds, one fault trending north, the other, more recent fault, trending east. These two faults are thought to be sequentially developed segments of the original fault zone inferred by Jongens et al. (1999) but with reinterpreted location and mechanism detail. The presence of two faults has resulted in overprinted differential uplift of the structure, which has been significantly degraded, especially in the southwest corner of the hill. The majority of the formation of the northerly trending structure of Starvation Hill is inferred to be pre-Otiran, with uplift of the later east trending structure continuing into the late Pleistocene and Holocene.

Page generated in 0.1328 seconds