• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurements Versus Predictions for the Static and Dynamic Characteristics of a Four-pad Rocker-pivot, Tilting-pad Journal Bearing

Tschoepe, David 1987- 14 March 2013 (has links)
Measured and predicted static and dynamic characteristics are provided for a four-pad, rocker-pivot, tilting-pad journal bearing in the load-on-pad and load-between-pad orientations. The bearing has the following characteristics: 4 pads, .57 pad pivot offset, 0.6 L/D ratio, 60.33 mm (2.375in) pad axial length, 0.08255 mm (0.00325 in) radial clearance in the load-on-pad orientation, and 0.1189 mm (0.00468 in) radial clearance in the load-between-pad orientation. Tests were conducted on a floating test bearing design with unit loads ranging from 0 to 2903 kPa (421.1 psi) and speeds from 6.8 to 13.2 krpm. For all rotor speeds, hot-clearance measurements were taken to show the reduction in bearing clearance due to thermal expansion of the shaft and pads during testing. As the testing conditions get hotter, the rotor, pads, and bearing expand, decreasing radial bearing clearance. Hot-clearance measurements showed a 16-25% decrease in clearance compared to a clearance measurement at room temperature. For all test conditions, dynamic tests were performed over a range of excitation frequencies to obtain complex dynamic stiffness coefficients as a function of frequency. The direct real dynamic stiffness coefficients were then fitted with a quadratic function with respect to frequency. From the curve fit, the frequency dependence was captured by including a virtual-mass matrix [M] to produce a frequency independent [K][C][M] model. The direct dynamic stiffness coefficients for the load-on-pad orientation showed significant orthotropy, while the load-between-pad did not. The load-between-pad showed slight orthotropy as load increased. Experimental cross-coupled stiffness coefficients were measured in both load orientations, but were of the same sign and significantly less than direct stiffness coefficients. In both orientations the imaginary part of the measured dynamic stiffness increased linearly with increasing frequency, allowing for frequency independent direct damping coefficients. Rotordynamic coefficients presented were compared to predictions from two different Reynolds-based models. Both models showed the importance of taking into account pivot flexibility and different pad geometries (due to the reduction in bearing clearance during testing) in predicting rotordynamic coefficients. If either of these two inputs were incorrect, then predictions for the bearings impedance coefficients were very inaccurate. The main difference between prediction codes is that one of the codes incorporates pad flexibility in predicting the impedance coefficients for a tilting-pad journal bearing. To look at the effects that pad flexibility has on predicting the impedance coefficients, a series of predictions were created by changing the magnitude of the pad's bending stiffness. Increasing the bending stiffness used in predictions by a factor of 10 typically caused a 3-11% increase in predicted Kxx and Kyy, and a 10-24% increase in predicted Cxx and Cyy. In all cases, increasing the calculated bending stiffness from ten to a hundred times the calculated value caused slight if any change in Kxx, Kyy, Cxx, and Cyy. For a flexible pad an increase in bending stiffness can have a large effect on predictions; however, for a more rigid pad an increase in pad bending stiffness will have a much lesser effect. Results showed that the pad's structural bending stiffness can be an important factor in predicting impedance coefficients. Even though the pads tested in this thesis are extremely stiff, changes are still seen in predictions when the magnitude of the pad?s bending stiffness is increased, especially in Cxx, and Cyy. The code without pad flexibility predicted Kxx and Kyy much more accurately than the code with pad flexibility. The code with pad flexibility predicts Cxx more accurately, while the code without pad flexibility predicted Cyy more accurately. Regardless of prediction Code used, the Kxx and Kyy were over-predicted at low loads, but predicted more accurately as load increased. Cxx, and Cyy were modeled very well in the load-on-pad orientation, while slightly overpredicted in the load-between-pad orientation. For solid pads, like the ones tested here, both codes do a decent job at predicting impedance coefficients
2

Otimização de Sistema de Ancoragem equivalente em Profundidade Truncada

FERREIRA, Fábio Martins Gonçalves 29 January 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-28T12:37:32Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Doutorado_EngCivil_FMGF_2016_[digital].pdf: 9767217 bytes, checksum: e33d3971801fd7f7f68b85fc05826ba3 (MD5) / Made available in DSpace on 2016-07-28T12:37:32Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Doutorado_EngCivil_FMGF_2016_[digital].pdf: 9767217 bytes, checksum: e33d3971801fd7f7f68b85fc05826ba3 (MD5) Previous issue date: 2016-01-29 / Ao esgotar as reservas de hidrocarbonetos em terra e águas rasas, a indústria vem explorando e produzindo petróleo em águas profundas e ultraprofundas. No entanto, a verificação hidrodinâmica de novos sistemas flutuantes de produção continua usando as metodologias consagradas, especialmente os ensaios em tanques oceânicos de laboratório. A utilização de modelos em escala reduzida vem sendo adotada desde os primeiros projetos em águas rasas e continua até hoje nos projetos em águas ultraprofundas. No entanto, os ensaios em profundidades superiores a 1.500m necessitam de um fator de escala muito elevado, com diversos problemas associados, dentre eles as dificuldades de acomodar as linhas de ancoragem e as incertezas relacionadas a modelos muito pequenos. Dentre as soluções possíveis, os ensaios híbridos (numérico-experimental) se apresentam como a solução mais viável para verificação experimental em águas ultraprofundas, em especial o ensaio híbrido passivo. Esse tipo de ensaio é organizado em etapas, sendo a primeira delas responsável pela definição do sistema truncado. Se essa etapa não for executada de forma satisfatória, o sucesso do ensaio pode ser comprometido. Assim, a fim de minimizar essa questão, propõe-se nesta tese de doutorado uma forma sistemática para encontrar sistemas truncado equivalentes, considerando os efeitos estáticos e dinâmicos, através da utilização de ferramentas de otimização. Nesse sentido, a abordagem adotada utiliza um simulador para análise estática e dinâmica de estruturas offshore denominado Dynasim e um algoritmo de otimização baseado em gradiente através do sistema Dakota. Também é utilizada a metodologia de planejamento de experimentos para identificar os fatores que influenciam as respostas estática e dinâmica do problema, evitando o uso de variáveis de projeto irrelevantes no estudo da otimização. Ressalta-se que essa metodologia não foi aplicada em outros trabalhos no contexto de sistemas de ancoragem truncado, segundo nosso conhecimento. Além disso, analisa-se o projeto ótimo do sistema truncado em várias condições ambientais, cujo interesse é verificar a concordância dele com o sistema de ancoragem na profundidade completa. Devido ao elevado custo computacional envolvido nessa verificação, utiliza-se a computação de alto desempenho, com processamento paralelo, para viabilizar a realização dessas análises. Como é demonstrado neste trabalho, a metodologia proposta facilita a busca de sistemas de ancoragem truncado equivalente preservando as características estáticas e dinâmicas do sistema de ancoragem completo. São apresentados e discutidos quatro casos, os dois primeiros se referem a casos simplificados, o terceiro é baseado na literatura e o quarto é baseado em um cenário real. Os resultados obtidos nos casos estudados mostram que os sistemas truncados equivalentes encontrados conseguem reproduzir o comportamento dos sistemas completos para as condições verificadas. / With the depletion of onshore and offshore shallow-water reserves, the industry has exploited and produced oil in deep water and ultra-deepwater. However, the hydrodynamic verification of new floating production systems continues using the established methodologies, especially by carrying out tests on ocean basin laboratories. Small-scale model tests have been used since the first projects in shallow water and continue today in the projects in ultra-deepwater. However, tests in depths above 1,500m require a very high scale factor, which poses several complications, among them the difficulties to accommodate the mooring lines and the small models related uncertainties. Among the possible solutions, the hybrid testing (numerical and experimental) are the most feasible solution to experimental verification in ultra-deepwater, especially the hybrid passive systems test. Such test is divided into steps, the first one responsible for the definition of the truncated system. If this step is not performed satisfactorily, the success of the test may be compromised. Thus, in order to minimize this issue, a systematic way to find equivalent truncated systems, considering the static and dynamic effects through the use of the optimization tools is proposed in this doctoral thesis. Accordingly, the approach adopted uses a numerical simulator, called Dynasim, for static and dynamic analysis of offshore structures, and a gradient based optimization algorithm, given in Dakota computational system. Additionally, the design of experiments methodology is used to identify the factors that influence the static and dynamic responses of the problem, avoiding the use of irrelevant design variables in the optimization process. It has to be emphasized that this methodology has not been used in other works in the context of truncated mooring systems, to our knowledge. Furthermore, the optimal design of the truncated system is analyzed for several environmental conditions. The aim is to verify the agreement of the truncated mooring system with system in the full-depth. Due to the high computational cost involved in the verification, we use the high-performance computing, with parallel computation, to perform the analyzes. As shown in this work, the proposed methodology easy the search for equivalent truncated mooring systems preserving the static and dynamic characteristics of full-depth mooring systems. Four case studies are presented and discussed. The first two refer to simplified cases; the third is based on the literature and the fourth is based on a real scenario. The results in each case show that the truncated equivalent system found can reproduce the behavior of full-depth system for the verified conditions.

Page generated in 0.1686 seconds