• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analysis of posture, muscle activity and keyboard dynamics in computer users with and without work-related neck and upper limb disorders

Szeto, Pui Yuk Grace January 2003 (has links)
Computer technology has advanced rapidly in the past few decades and computers have become a very important and powerful tool in our everyday lives. Prolonged computer use by office workers has been reported to result in an increased risk of developing Work-related Neck and Upper Limb Disorders (WRNULD) (Bernard et al.. 1994: Faucett & Rempel. 1994: Tittiranonda et al.. 1999). The occupational risk factors associated with prolonged computer use include static posture and the speed and force of keyboard operation. Past studies have examined different aspects of these risk factors through measuring muscle electrical activity (EMG), kinematics and keyboard forces. However, most of these studies have been conducted on healthy painfree subjects and even the few Case-Control studies have not clearly established any direct relationships between the risk factors and WRNULD. The present research project consisted of a series of three studies aimed at investigating whether there were intrinsic differences among different individuals in response to different physical stressors. These intrinsic differences may have important implications to help explain why some individuals would develop WRNULD while others do not. The individuals' responses to the demands of three physical stressors: static posture, speed and force of keyboard operation were assessed. The internal exposure measures of kinematics, EMG, keyboard dynamics and subjective discomforts were used to evaluate the inter-individual differences. Study I was a field investigation comparing the neck-shoulder kinematics between symptomatic ("Case", n=8) and asymptomatic ("Control", n=8) office workers. Results showed trends for consistently greater head tilt and neck flexion angles, and greater ranges of movements in the Case Group than the Control Group. / The Case Group also exhibited a trend for increased acromion protraction compared to the Control Group. The Case Group also reported significantly greater discomfort scores compared to the Control Group. Neither the discomforts nor the kinematics displayed any significant changes over a working day. Study 2 was a laboratory study comparing the responses of Case and Control Groups in terms of EMG, kinematics and subjective discomforts, while a standardised computer task was performed continuously for one hour. The responses of Case (n=23) and Control (n=20) Groups were compared to examine the effects of static posture. The results showed similar trends to those in Study I, with increased neck flexion mean angles and ranges of movements in the Case Group compared to the Control Group. In terms of EMG results, there were trends for EMG amplitude differences in the right upper trapezius (UT) and cervical erector spinae (CES) muscles between Case and Control Groups. These trends became statistically significant when the Case subjects were sub-divided into the High (n=15) and Low (n=8) Groups based on their mean discomfort scores. Study 3 was also a laboratory study to compare the Case (n=21) and Control (n=20) Groups when they were challenged by the physical stressors of speed and force of keyboard operation. In this study, each subject's EMG and discomforts were examined in three typing conditions of normal speed and force, increased typing speed and increased typing force. The Case Group showed trends for higher increases in both UT and CES muscle activities than the Control Group, and when divided into the High-Low Groups, the High Group (n=8) showed trends for much higher muscle activities in all three conditions. / Beside muscle activity changes, the High Group subjects also demonstrated a trend for much higher within-subject Speed and Force Variabilities in their keystroke performance, compared to the Low Group and the Control Group. This result implied that the High Group subjects had a more erratic motor control of the keystroke actions. Based on these results, conceptual models were developed to describe the relationships among the physical stressors, internal exposure responses and discomforts. The Altered Motor Control Model refers to the programmed changes in motor control strategies involving muscle recruitment and joint movement patterns, and these changes were closely related to the subjects' musculoskeletal discomforts. The Heightened Sensitivity Model describes the higher sensitivity levels of individuals with more severe discomforts, in response to the demands of physical stressors. These models are closely related and heightened sensitivity may be an 'effect-modifier" of the motor control mechanisms and the perception of discomforts or pains within the individual. In conclusion, the present research has identified important differences between individuals on the basis of their motor control strategies which may contribute to the development of WRNULD. While the present research has mainly examined the individual responses to three physical stressors, it is possible that the models developed may be applicable to other physical stressors. These findings may also have important implications for future ergonomic research, emphasising the need to address interindividual differences in ergonomic interventions to workers. Further research should be directed towards better understanding of these intrinsic individual differences in both physical and non-physical factors that contribute to the development of WRNULD.
2

The reliability and validity of surface electromyography to study the functional status of the lumbar paraspinal muscles

Kamei, Ken, ken.kamei@student.rmit.edu.au January 2010 (has links)
The aim of this thesis is to determine whether surface electromyography (EMG) can be used as a diagnostic tool in chiropractic practice to identify the functional status of the lumbar paraspinal muscles. There were two main studies to achieve this aim. The reliability and validity of the surface EMG signal to measure the activity of paraspinal muscles during maintenance of simple static postures was evaluated. During maintenance of static postures, the raw surface EMG signal was often contaminated by an electrocardiographic (ECG) signal. Although the ECG artefact was successfully removed using two different ECG removal techniques (manual and semi-automatic), the reliability of the surface EMG signal was not significantly improved (ICC less than 0.75) for both non-normalised and normalised data. Therefore the static postures that were used in this thesis did not provide a protocol that can be used to measure the functional status of the lumbar paraspinal muscles in clinical practice. However, when muscle contraction was at a moderate level, the reliability of EMG signal became better. Walking was considered to be a possible protocol to record a reliable surface EMG signal from paraspinal muscles. Three components of the surface EMG signal were used to characterise the pattern of muscle activity during steady state walking. The narrow window technique was used to characterise the peak activation point of the activity envelope in order to capture a stationary signal from which to calculate amplitude and frequency measures. Walking is a cyclic activity. The back muscles contract rhythmically during a single gait cycle. It is possible to identify the start and end points of the activity envelope associated with the rhythmic contraction of the muscles and define the timing of the muscle activation cycle relative to heel strike. The metronome was found to be useful to control the pace of natural walking in this study. The surface EMG signal of the first recording minute (1 ~ 2 minute) was not associated with a signal that was stable in terms of the parameters that were used in this study. It wa s found that the last recording minute (9 ~ 10 minute) can be used. This suggests that it may be necessary for subjects to walk for a defined period lasting some minutes before the commencement of recording of the surface EMG. Surface EMG may be used as a tool to measure activation patterns of the low back muscles during muscle contraction associated with the support of various static postures or during the execution of dynamic movements such as walking in the real world. The static postures used in this thesis to record the surface EMG signal from the lumbar paraspinal muscles were found not to provide the basis for a reliable and valid tool. However, a walking exercise might be an alternative activity which can be used easily in clinical practice. The components of the surface EMG signal that may be used in future studies might include measures of the amplitude, frequency and timing of the surface EMG signal.

Page generated in 0.0841 seconds