Spelling suggestions: "subject:"istatistical communication theory."" "subject:"bystatistical communication theory.""
21 |
Error bounds for parallel communication channels.January 1966 (has links)
Bibliography: p. 87-88. / Contract no. DA36-039-AMC-03200(E).
|
22 |
Sequential measurement of multidimensional transducers.January 1964 (has links)
Bibliography: p. 85.
|
23 |
A study of the performance of linear and nonlinear filters.January 1964 (has links)
No description available.
|
24 |
Statistical theory applied to communication through multipath disturbances.January 1953 (has links)
Includes bibliographies.
|
25 |
Proposed implementation of a near-far resistant multiuser detector without matrix inversion using Delta-Sigma modulationMyers, Timothy F. 29 April 1992 (has links)
A new algorithm is proposed which provides a sub-optimum near-far resistant
pattern for correlation with a known signal in a spread-spectrum multiple access
environment with additive white gaussian noise (AWGN). Only the patterns and
respective delays of the K-1 interfering users are required. The technique does not
require the inversion of a cross-correlation matrix. The technique can be easily
extended to as many users as desired using a simple recursion equation. The
computational complexity is O(K²) for each user to be decoded. It is shown that this
method provides the same results as the "one-shot" method proposed by Verdu and
Lupas.
Also shown is a new array architecture for implementing this new solution
using delta-sigma modulation and a correlator for non-binary patterns that takes
advantage of the digitized Al: signals. Simulation results are presented which show
the algorithm and correlator to be implementable in VLSI technology. This
approach allows processing of the received signal in real-time with a delay of O(.K)
bit periods per user. A modification of the algorithm is examined which allows
further reduction of complexity at the expense of reduced performance. / Graduation date: 1992
|
26 |
The spatial cross-correlation coefficient as an ultrasonic detection statisticCepel, Raina. January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 7, 2008) Includes bibliographical references.
|
27 |
Digital data processing techniques for radar mapping.January 1968 (has links)
Contract no. AF-33(615)-3227. Project DSR 76143.
|
28 |
Queing analysis of a shared voice/data linkFriedman, Daniel Uri January 1982 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engieering and Computer Science, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. Engineering copy is in leaves. / Bibliography: p. 156-157. / by Daniel Uri Friedman. / Ph.D.
|
29 |
Bayesian inference on dynamics of individual and population hepatotoxicity via state space modelsLi, Qianqiu, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xiv, 155 p.; also includes graphics (some col.). Includes bibliographical references (p. 147-155). Available online via OhioLINK's ETD Center
|
30 |
Definição automática de classificadores fuzzy probabilísticos / Automatic design of probabilistic fuzzy classifiersMelo Jr., Luiz Ledo Mota 18 September 2017 (has links)
CNPq / Este trabalho apresenta uma abordagem para a definição automática de bases de regras em Classificadores Fuzzy Probabilísticos (CFPs), um caso particular dos Sistemas Fuzzy Probabilísticos. Como parte integrante deste processo, são utilizados métodos de redução de dimensionalidade como: análise de componentes principais e discriminante de Fisher. Os algoritmos de agrupamento testados para particionar o universo das variáveis de entrada do sistema são Gustafson-Kessel, Supervised Fuzzy Clustering ambos já consolidados na literatura. Adicionalmente, propõe-se um novo algoritmo de agrupamento denominado Gustafson-Kessel com Ponto Focal como parte integrante do projeto automático de CFPs. A capacidade deste novo algoritmo em identificar clusters elipsoidais e não elipsoidais também é avaliada neste trabalho. Em dados altamente correlacionados ou totalmente correlacionados ocorrem problemas na inversão da matriz de covariância fuzzy. Desta forma, um método de regularização é necessário para esta matriz e um novo método está sendo proposto neste trabalho.Nos CFPs considerados, a combinação de antecedentes e consequentes fornece uma base de regras na qual todos os consequentes são possíveis em uma regra, cada um associado a uma medida de probabilidade. Neste trabalho, esta medida de probabilidade é calculada com base no Teorema de Bayes que, a partir de uma função de verossimilhança, atualiza a informação a priori de cada consequente em cada regra. A principal inovação é o cálculo da função de verossimilhança que se baseia no conceito de “região Ideal” de forma a melhor identificar as probabilidades associadas aos consequentes da regra. Os CFPs propostos são comparados com classificadores fuzzy-bayesianos e outros tradicionais na área de aprendizado de máquina considerando conjuntos de dados gerados artificialmente, 30 benchmarks e também dados extraídos diretamente de problemas reais como detecção de falhas em rolamentos de máquinas industriais. Os resultados dos experimentos mostram que os classificadores fuzzy propostos superam, em termos de acurácia, os classificadores fuzzy-bayesianos considerados e alcançam resultados competitivos com classificadores não-fuzzy tradicionais usados na comparação. Os resultados também mostram que o método de regularização proposto é uma alternativa para a técnica de agrupamento Gustafson-Kessel (com ou sem ponto focal) quando se consideram dados com alta correção linear. / This work presents a new approach for the automatic design of Probabilistic Fuzzy Classifiers (PFCs), which are a special case of Probabilistic Fuzzy Systems. As part of the design process we consider methods for reducing the dimensionality like the principal component analysis and the Fisher discriminant. The clustering methods tested for partitioning the universe of input variables are Gustafson-Kessel and Supervised Fuzzy Clustering, both consolidated in the literature. In addition, we propose a new clustering method called Gustafson-Kessel with Focal Point as part of the automatic design of PFCs. We also tested the capacity of this method to deal with ellipsoidal and non-ellipsoidal clusters. Highly correlated data represent a challenge to fuzzy clustering due to the inversion of the fuzzy covariance matrix. Therefore, a regularization method is necessary for this matrix and a new one is proposed in this work. In the proposed PFCs, the combination of antecedents and consequents provides a rule base in which all consequents are possible, each one associated with a probability measure. In this work, the probability is calculated based on the Bayes Theorem by updating, through the likelihood function, a priori information concerning every consequent in each rule. The main innovation is the calculus of the likelihood functions which is based on the “ideal region” concept, aiming to improve the estimation of the probabilities associated with rules’ consequents. The proposed PFCs are compared with fuzzy-bayesian classifiers and other ones traditional in machine learning over artificial generated data, 30 different benchmarks and also on data directly extracted from real world like the problem of detecting bearings fault in industrial machines. Experiments results show that the proposed PFCs outperform, in terms of accuracy, the fuzzy-bayesian approaches and are competitive with the traditional non-fuzzy classifiers used in the comparison. The results also show that the proposed regularization method is an alternative to the Gustafson-Kessel clustering technique (with or without focal point) when using linearly correlated data.
|
Page generated in 0.2323 seconds