Spelling suggestions: "subject:"istatistical complexity"" "subject:"bystatistical complexity""
1 |
Discovery of low-dimensional structure in high-dimensional inference problemsAksoylar, Cem 10 March 2017 (has links)
Many learning and inference problems involve high-dimensional data such as images, video or genomic data, which cannot be processed efficiently using conventional methods due to their dimensionality. However, high-dimensional data often exhibit an inherent low-dimensional structure, for instance they can often be represented sparsely in some basis or domain. The discovery of an underlying low-dimensional structure is important to develop more robust and efficient analysis and processing algorithms.
The first part of the dissertation investigates the statistical complexity of sparse recovery problems, including sparse linear and nonlinear regression models, feature selection and graph estimation. We present a framework that unifies sparse recovery problems and construct an analogy to channel coding in classical information theory. We perform an information-theoretic analysis to derive bounds on the number of samples required to reliably recover sparsity patterns independent of any specific recovery algorithm. In particular, we show that sample complexity can be tightly characterized using a mutual information formula similar to channel coding results. Next, we derive major extensions to this framework, including dependent input variables and a lower bound for sequential adaptive recovery schemes, which helps determine whether adaptivity provides performance gains. We compute statistical complexity bounds for various sparse recovery problems, showing our analysis improves upon the existing bounds and leads to intuitive results for new applications.
In the second part, we investigate methods for improving the computational complexity of subgraph detection in graph-structured data, where we aim to discover anomalous patterns present in a connected subgraph of a given graph. This problem arises in many applications such as detection of network intrusions, community detection, detection of anomalous events in surveillance videos or disease outbreaks. Since optimization over connected subgraphs is a combinatorial and computationally difficult problem, we propose a convex relaxation that offers a principled approach to incorporating connectivity and conductance constraints on candidate subgraphs. We develop a novel nearly-linear time algorithm to solve the relaxed problem, establish convergence and consistency guarantees and demonstrate its feasibility and performance with experiments on real networks.
|
2 |
Multifield visualization using local statistical complexityJänicke, Heike, Wiebel, Alexander, Scheuermann, Gerik, Kollmann, Wolfgang 05 February 2019 (has links)
Modern unsteady (multi-)field visualizations require an effective reduction of the data to be displayed. From a huge amount of information the most informative parts have to be extracted. Instead of the fuzzy application dependent notion of feature, a new approach based on information theoretic concepts is introduced in this paper to detect important regions. This is accomplished by extending the concept of local statistical complexity from finite state cellular automata to discretized (multi-)fields. Thus, informative parts of the data can be highlighted in an application-independent, purely mathematical sense. The new measure can be applied to unsteady multifields on regular grids in any application domain. The ability to detect and visualize important parts is demonstrated using diffusion, flow, and weather simulations.
|
3 |
Models of Discrete-Time Stochastic Processes and Associated Complexity Measures / Modelle stochastischer Prozesse in diskreter Zeit und zugehörige KomplexitätsmaßeLöhr, Wolfgang 24 June 2010 (has links) (PDF)
Many complexity measures are defined as the size of a minimal representation in
a specific model class. One such complexity measure, which is important because
it is widely applied, is statistical complexity. It is defined for
discrete-time, stationary stochastic processes within a theory called
computational mechanics. Here, a mathematically rigorous, more general version
of this theory is presented, and abstract properties of statistical complexity
as a function on the space of processes are investigated. In particular, weak-*
lower semi-continuity and concavity are shown, and it is argued that these
properties should be shared by all sensible complexity measures. Furthermore, a
formula for the ergodic decomposition is obtained.
The same results are also proven for two other complexity measures that are
defined by different model classes, namely process dimension and generative
complexity. These two quantities, and also the information theoretic complexity
measure called excess entropy, are related to statistical complexity, and this
relation is discussed here.
It is also shown that computational mechanics can be reformulated in terms of
Frank Knight's prediction process, which is of both conceptual and technical
interest. In particular, it allows for a unified treatment of different
processes and facilitates topological considerations. Continuity of the Markov
transition kernel of a discrete version of the prediction process is obtained as
a new result.
|
4 |
Models of Discrete-Time Stochastic Processes and Associated Complexity MeasuresLöhr, Wolfgang 12 May 2010 (has links)
Many complexity measures are defined as the size of a minimal representation in
a specific model class. One such complexity measure, which is important because
it is widely applied, is statistical complexity. It is defined for
discrete-time, stationary stochastic processes within a theory called
computational mechanics. Here, a mathematically rigorous, more general version
of this theory is presented, and abstract properties of statistical complexity
as a function on the space of processes are investigated. In particular, weak-*
lower semi-continuity and concavity are shown, and it is argued that these
properties should be shared by all sensible complexity measures. Furthermore, a
formula for the ergodic decomposition is obtained.
The same results are also proven for two other complexity measures that are
defined by different model classes, namely process dimension and generative
complexity. These two quantities, and also the information theoretic complexity
measure called excess entropy, are related to statistical complexity, and this
relation is discussed here.
It is also shown that computational mechanics can be reformulated in terms of
Frank Knight''s prediction process, which is of both conceptual and technical
interest. In particular, it allows for a unified treatment of different
processes and facilitates topological considerations. Continuity of the Markov
transition kernel of a discrete version of the prediction process is obtained as
a new result.
|
Page generated in 0.0766 seconds