• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Subgroup Identification in Clinical Trials

Li, Xiaochen 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Subgroup analyses assess the heterogeneity of treatment effects in groups of patients defined by patients’ baseline characteristics. Identifying subgroup of patients with differential treatment effect is crucial for tailored therapeutics and personalized medicine. Model-based variable selection methods are well developed and widely applied to select significant treatment-by-covariate interactions for subgroup analyses. Machine learning and data-driven based methods for subgroup identification have also been developed. In this dissertation, I consider two different types of subgroup identification methods: one is nonparametric machine learning based and the other is model based. In the first part, the problem of subgroup identification was transferred to an optimization problem and a stochastic search technique was implemented to partition the whole population into disjoint subgroups with differential treatment effect. In the second approach, an integrative three-step model-based variable selection method was proposed for subgroup analyses in longitudinal data. Using this three steps variable selection framework, informative features and their interaction with the treatment indicator can be identified for subgroup analysis in longitudinal data. This method can be extended to longitudinal binary or categorical data. Simulation studies and real data examples were used to demonstrate the performance of the proposed methods. / 2022-05-06

Page generated in 0.0989 seconds