• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Linear prediction of a multivariate time series applied to atmospheric scalar fields

Bauer, Kenneth George. January 1973 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1972. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
12

Stratifications of upper level winds using height difference and geostrophic vorticity

Snyder, Earl Paul. January 1961 (has links)
Thesis (M.S.)--University of Wisconsin, 1961. / Also published as AFCRL-TN-61-844, and University of Wisconsin Dept. of Meteorology Scientific report no. 5. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 43).
13

A statistical model to forecast short-term Atlantic hurricane intensity

Law, Kevin T., January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 187-192).
14

Cloud droplet growth by stochastic coalescence.

Chu, Lawrence Dit Fook January 1971 (has links)
No description available.
15

The Extratropical Transition of Tropical Cyclones: Present-Day Climatology, Future Projections, and Statistical Prediction

Bieli, Melanie January 2019 (has links)
This thesis addresses the extratropical transition (ET) of tropical cyclones. ET is the process by which a tropical cyclone, upon encountering a baroclinic environment at higher latitudes, loses its tropical characteristics and transforms into an extratropical cyclone. The three main goals of the thesis are to develop a historical climatology of global ET occurrence, to examine future projections of ET using a global climate model, and to advance the predictive understanding of ET. A global climatology of ET from 1979-2017 is presented, which explores frequency of occurrence, geographical and seasonal patterns, climate variability, and environmental settings associated with different types of ET in global ocean basins. ET is defined objectively by means of tropical cyclones' trajectories through the Cyclone Phase Space (CPS), which is calculated using storm tracks from best track data and geopotential height fields from reanalysis datasets. Two reanalysis datasets are used and compared for this purpose, the Japanese 55-year Reanalysis (JRA-55) and the ECMWF Interim Reanalysis (ERA-Interim). Results show that ET is most common in the western North Pacific and the North Atlantic, where about half of the tropical cyclones transition into extratropical cyclones. Coastal regions in these basins also face the highest rates of landfalling ET storms. In the Southern Hemisphere basins, ET percentages range from about 20% to 40%. Different "ET pathways" through the CPS are linked to different geographical trajectories and environmental settings: A majority of ETs start with the tropical cyclone becoming thermally asymmetric and end with the formation of a cold core. This pathway typically occurs over warmer sea surface temperatures and takes longer than the reverse pathway, in which a tropical cyclone undergoes ET by developing a cold core before becoming asymmetric. The classifications of tropical cyclones into "ET storms" (tropical cyclones that undergo at some point in their lifetimes) and "non-ET storms" (tropical cyclones that do not undergo ET) obtained from JRA-55 and ERA-Interim are evaluated against the classification obtained from the best track records. In contrast to the CPS definition of ET, which is automated and objective, the best track definition of ET is given by the subjective judgment of human forecasters who take into account a wider range of data. According to the F1 score and the Matthews correlation coefficient, two performance metrics that balance classification sensitivity and specificity, the CPS classification agrees most with the best track classification in the western North Pacific and the North Atlantic, and least in the eastern North Pacific. The JRA-55 classification achieves higher performance scores than does the ERA-Interim classification, mostly because ERA-Interim has a bias toward cold-core structures in the representation of tropical cyclones. Future projections of ET are examined using a five-member ensemble of a coupled global climate model, the Flux-Adjusted Forecast-oriented Low Ocean Resolution (FLOR-FA) version of CM2.5 developed at the Geophysical Fluid Dynamics Laboratory. First, CPS is applied to 1979-2005 FLOR-FA output to develop a historical ET climatology, which is compared to the 1979-2005 ET climatology obtained from JRA-55. This comparison shows that FLOR-FA simulates many unrealistic low-latitude ET events, due to strong local maxima in the geopotential height fields used as input to calculate the CPS parameters. These local maxima, which arguably result from strong grid-scale convective updrafts, mislead the CPS to detect an upper-level cold core where one is not present. Three solutions to this problem are examined: changing the algorithm to compute the CPS parameters such that it uses 95th percentile values of geopotential instead of the maxima, a temporal smoothing of the CPS parameters, and a combination of the previous two. All three modifications largely correct the misdiagnosed cases. Future (2071-2100) projections of ET activity under the Representative Concentration Pathway 4.5 are then explored. A number of changes between the future and historical simulations are robust with respect to the different modifications to the CPS described above, though few are statistically significant. A statistical model that predicts ET in the western North Pacific and the North Atlantic is introduced. The model, a logistic regression with elastic net regularization, was developed with a focus on predictive performance as well as physical interpretability and thus resides at the interface between machine learning and traditional statistics. It uses eight predictors that characterize the storm and its environment, the most important ones being latitude and sea surface temperature. The model is shown to have skill in forecasting ET at lead times up to two days, and it can predict the phase evolution of storms that undergo ET as well as of storms that remain tropical throughout their lifetimes. When used as an instantaneous diagnostic of a storm's tropical/extratropical status, the model performs about as well as the CPS in the western North Pacific and better than the CPS in the North Atlantic, and it predicts the timings of the transitions better than the CPS in both basins. The model can be integrated into statistical tropical cyclone risk models, or may be applied to provide baseline guidance for operational forecasts.
16

Impacts of weather on aviation delays at O.R. Tambo International Airport, South Africa

Peck, Lara 11 1900 (has links)
Weather-related delays in the aviation sector will always occur, however, through effective delay management and improved weather forecasting, the impact and duration of delays can be reduced. The research examined the type of weather that caused departure delays, due to adverse weather at the departure station, namely O. R. Tambo International Airport (ORTIA), over the period 2010 to 2013. It was found that the most significant weather that causes such delays are thunderstorms, followed by fog. Other noteworthy elements are rainfall, without the influence of other weather elements, and icing. It was also found that the accuracy of a weather forecast does not impact on the number of departure delays, and thus departure delays due to weather at the departure station are largely unavoidable. However, the length and impact of such delays can be reduced through improved planning. The study highlights that all weather-related delays can be reduced by improved weather forecasts, effective assessment of the weather forecast, and collaborative and timely decision making. A weather impact index system was designed for ORTIA and recommendations for delay reductions are made. / Geography / M. Sc. (Geography)

Page generated in 0.1641 seconds