• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Analysis of a Shaft-Rotor System

Phillips, Donald Andrew 14 March 2001 (has links)
The United States Air Force is in the process of developing a more electric aircraft. The development of an aircraft Integrated Power Unit and an Internal Starter/Generator will be instrumental in producing sufficient electrical power to run all non propulsive systems. Iron-cobalt alloys, such as Hiperco alloy 50HS, are high temperature, high strength magnetic materials ideal for these power applications. Design requirements and previous studies indicate that these materials need to survive in temperatures up to 1000F (810K), rotation speeds of about 55,000 rpm, and have strengths in excess of 80 ksi. Research conducted by Fingers provided the material and creep properties used in the analysis presented in this report. The finite element method was used to analyze a spinning rotor mounted to a circular shaft via an interference fit subjected to various operating environments. The power law creep model defined by Fingers was used to analyze three distinct rotor configurations. The first configuration was a constant temperature single lamina, mounted to a shaft of equal thickness, subject to temperatures between 727K and 780K, rotation speeds between 35,000 rpm and 60,000 rpm, and two different interference fits: 0.0015 inches and 0.003 inches. The results yield conservative predictions that indicate that these models could not survive the required operating conditions. The second configuration was a linear radial variation in temperature single lamina, mounted to a shaft of equal thickness, subjected to three temperature ranges, rotation speeds between 30,000 rpm and 55,000 rpm, and two different interference fits; 0.0015 inches and 0.003 inches. These results represent a more realistic model, which indicate that the "cooler" inner portions of the rotor restrict the creep deformations of the "hotter" outer portions resulting in higher possible operating temperatures and rotation speeds very near the required operating conditions. The third configuration was a lamina stack comprised of two rotor lamina, with a Coulomb friction surface interaction, and held together by a compressive axial force. These models represent a first step towards understanding the behavior of the entire rotor stack. / Master of Science
2

Transient and Steady-state Creep in a SnAgCu Lead-free Solder Alloy: Experiments and Modeling

Shirley, Dwayne R. 08 March 2011 (has links)
It has been conventional to simplify the thermo-mechanical modeling of solder joints by omitting the primary (transient) contributions to total creep deformation, assuming that secondary (steady-state) creep strain is dominant and primary creep is negligible. The error associated with this assumption has been difficult to assess because it depends on the properties of the solder joint and the temperature-time profile. This research examines the relative contributions of primary and secondary creep in Sn3.8Ag0.7Cu solder using the constant load creep and stress relaxation measurements for bulk tensile specimens and the finite element analysis of a chip resistor (trilayer) solder joint structure that was thermally cycled under multiple temperature ranges and ramp rates. It was found that neglect of primary creep can result in errors in the predicted stress and strain of the solder joint. In turn, these discrepancies can lead to errors in the estimation of the solder thermal fatigue life due to the changing proportion of primary creep strain to total inelastic strain under different thermal profiles. The constant-load creep and stress relaxation data for Sn3.8Ag0.7Cu span a range of strain rates 10(-8) 1/s < strain rate < 10(-4) 1/s, and temperatures 25°C, 75°C and 100°C. Creep and stress relaxation measurements show that transient creep caused faster strain rates during stress relaxation for a given stress compared to the corresponding minimum creep rate from constant-load creep tests. The extent of strain hardening during primary creep was a function of temperature and strain rate. A constitutive creep model was presented for Sn3.8Ag0.7Cu that incorporates both transient and steady-state creep to provide agreement for both creep and stress relaxation data with a single set of eight coefficients. The model utilizes both temperature compensated time and strain rate to normalize minimum strain rate and saturated transient creep strain, thereby establishing equivalence between decreased temperature and increased strain rate. The apparent activation energy of steady-state creep was indicative of both dislocation core and bulk lattice diffusion was the most sensitive model parameter. A saturation threshold was defined that distinguishes whether primary or secondary creep is dominant under either static or variable loading.
3

Transient and Steady-state Creep in a SnAgCu Lead-free Solder Alloy: Experiments and Modeling

Shirley, Dwayne R. 08 March 2011 (has links)
It has been conventional to simplify the thermo-mechanical modeling of solder joints by omitting the primary (transient) contributions to total creep deformation, assuming that secondary (steady-state) creep strain is dominant and primary creep is negligible. The error associated with this assumption has been difficult to assess because it depends on the properties of the solder joint and the temperature-time profile. This research examines the relative contributions of primary and secondary creep in Sn3.8Ag0.7Cu solder using the constant load creep and stress relaxation measurements for bulk tensile specimens and the finite element analysis of a chip resistor (trilayer) solder joint structure that was thermally cycled under multiple temperature ranges and ramp rates. It was found that neglect of primary creep can result in errors in the predicted stress and strain of the solder joint. In turn, these discrepancies can lead to errors in the estimation of the solder thermal fatigue life due to the changing proportion of primary creep strain to total inelastic strain under different thermal profiles. The constant-load creep and stress relaxation data for Sn3.8Ag0.7Cu span a range of strain rates 10(-8) 1/s < strain rate < 10(-4) 1/s, and temperatures 25°C, 75°C and 100°C. Creep and stress relaxation measurements show that transient creep caused faster strain rates during stress relaxation for a given stress compared to the corresponding minimum creep rate from constant-load creep tests. The extent of strain hardening during primary creep was a function of temperature and strain rate. A constitutive creep model was presented for Sn3.8Ag0.7Cu that incorporates both transient and steady-state creep to provide agreement for both creep and stress relaxation data with a single set of eight coefficients. The model utilizes both temperature compensated time and strain rate to normalize minimum strain rate and saturated transient creep strain, thereby establishing equivalence between decreased temperature and increased strain rate. The apparent activation energy of steady-state creep was indicative of both dislocation core and bulk lattice diffusion was the most sensitive model parameter. A saturation threshold was defined that distinguishes whether primary or secondary creep is dominant under either static or variable loading.

Page generated in 0.0513 seconds