Spelling suggestions: "subject:"steel alloys"" "subject:"steel molloys""
11 |
Welding metallurgy and toughness improvement for mild and low-alloyed steel electroslag weldments /Yu, Dawei. January 1988 (has links)
Thesis (Ph. D.)--Oregon Graduate Center, 1988.
|
12 |
Quantitative microstructural characterization of microalloyed steelsLu, Junfang. January 2009 (has links)
Thesis (Ph. D.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on Dec. 16, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Engineering, Department of Chemical and Materials Engineering, University of Alberta." Includes bibliographical references.
|
13 |
An experimental and theoretical investigation for the machining of hardened alloy steelsLee, Tae-Hong, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The research work in this thesis involves an experimental and theoretical investigation for high speed machining of AISI 4140 medium carbon steels and AISI D2 tool steels which are classified as being difficult to machine materials. An experimental program was carried out to determine the cutting forces, chip formation, the secondary deformation zone thickness and surface roughness at different cutting speeds using a 0.4mm and 0.8mm nose radii ceramic tools and -7?? rake angle for annealed (virgin) AISI 4140 and heat treated AISI 4140 steel. Another series of experiments was carried out on the annealed (virgin) and heat treated AISI D2 with 0.4mm, 0.8mm and 1.2mm nose radii CBN (Cubic Boron Nitride) tools under various cutting conditions. A theoretical model is developed by taking into account the flow stress properties of the AISI 4140 (0.44% carbon content) to use with the Oxley Machining approach. To find the flow stress data for AISI D2 tool steel, the Johnson and Cook empirical constitutive equation is used as the constitutive model. In addition, the magnitude of tool radius should be also considered to determine the prediction of cutting performances. To account for the effect of nose radius edge in hard machining, a simplified geometrical method is used to model the parameters for application in the Oxley Model and works for the cutting conditions considered here. These extensions to the Oxley machining theory were verified by experimental results. These results show a good agreement between the Oxley machining theory and hard machining experiment at data. The research work described in this thesis provides useful data for hard machining conditions.
|
14 |
An experimental and theoretical investigation for the machining of hardened alloy steelsLee, Tae-Hong, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The research work in this thesis involves an experimental and theoretical investigation for high speed machining of AISI 4140 medium carbon steels and AISI D2 tool steels which are classified as being difficult to machine materials. An experimental program was carried out to determine the cutting forces, chip formation, the secondary deformation zone thickness and surface roughness at different cutting speeds using a 0.4mm and 0.8mm nose radii ceramic tools and -7?? rake angle for annealed (virgin) AISI 4140 and heat treated AISI 4140 steel. Another series of experiments was carried out on the annealed (virgin) and heat treated AISI D2 with 0.4mm, 0.8mm and 1.2mm nose radii CBN (Cubic Boron Nitride) tools under various cutting conditions. A theoretical model is developed by taking into account the flow stress properties of the AISI 4140 (0.44% carbon content) to use with the Oxley Machining approach. To find the flow stress data for AISI D2 tool steel, the Johnson and Cook empirical constitutive equation is used as the constitutive model. In addition, the magnitude of tool radius should be also considered to determine the prediction of cutting performances. To account for the effect of nose radius edge in hard machining, a simplified geometrical method is used to model the parameters for application in the Oxley Model and works for the cutting conditions considered here. These extensions to the Oxley machining theory were verified by experimental results. These results show a good agreement between the Oxley machining theory and hard machining experiment at data. The research work described in this thesis provides useful data for hard machining conditions.
|
15 |
An experimental and theoretical investigation for the machining of hardened alloy steelsLee, Tae-Hong, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The research work in this thesis involves an experimental and theoretical investigation for high speed machining of AISI 4140 medium carbon steels and AISI D2 tool steels which are classified as being difficult to machine materials. An experimental program was carried out to determine the cutting forces, chip formation, the secondary deformation zone thickness and surface roughness at different cutting speeds using a 0.4mm and 0.8mm nose radii ceramic tools and -7?? rake angle for annealed (virgin) AISI 4140 and heat treated AISI 4140 steel. Another series of experiments was carried out on the annealed (virgin) and heat treated AISI D2 with 0.4mm, 0.8mm and 1.2mm nose radii CBN (Cubic Boron Nitride) tools under various cutting conditions. A theoretical model is developed by taking into account the flow stress properties of the AISI 4140 (0.44% carbon content) to use with the Oxley Machining approach. To find the flow stress data for AISI D2 tool steel, the Johnson and Cook empirical constitutive equation is used as the constitutive model. In addition, the magnitude of tool radius should be also considered to determine the prediction of cutting performances. To account for the effect of nose radius edge in hard machining, a simplified geometrical method is used to model the parameters for application in the Oxley Model and works for the cutting conditions considered here. These extensions to the Oxley machining theory were verified by experimental results. These results show a good agreement between the Oxley machining theory and hard machining experiment at data. The research work described in this thesis provides useful data for hard machining conditions.
|
16 |
The metallurgical phase transformations in ROQ-tuf AD690 due to the MMA welding process /Daames, Sherwyn M. January 1900 (has links)
Thesis (MTech (Mechanical Engineering))--Peninsula Technikon, 2002. / Word processed copy. Summary in English. Includes bibliographical references (leaves 142-143). Also available online.
|
17 |
Improvement of endurance limit of alloy steel by electroplatingQuirós, José Mario, 1938- January 1962 (has links)
No description available.
|
18 |
Feasibility study of casting low alloy steel in permanent moldFasoyinu, Festus Awoyemi, January 1982 (has links)
Thesis (M.S)--University of Wisconsin--Madison, 1982. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 81-83).
|
19 |
The effect of silicon on the ductile-to-brittle transition behavior in iron base alloysAbramowitz, Philip Herbert, January 1969 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1969. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
20 |
A study of hydrogen attack in low alloy steels by the dynamic exposure techniqueArnold, Richard Roy, January 1968 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1968. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
Page generated in 0.0548 seconds