• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

System Redundancy Evaluation for Steel Truss Bridge

Cao, Youyou 19 October 2015 (has links)
In current bridge practice, all tension members in a truss bridge are identified as fracture critical members which implies that a collapse is expected to occur once a member of this type fails. However, there are several examples which show that bridges have remained standing and shown little distress even after a fracture critical member was completely damaged. Due to the high inspection cost for fracture critical members, it would be beneficial to remove fracture critical designation from some tension members. This could be achieved via considering system redundancy. Since there is no clear guidance in existing codified provisions for assessing system redundancy, this research is undertaken to develop simplified analysis techniques to evaluate system redundancy in truss bridges. The proposed system redundancy analysis in this research starts with the identification of the most critical main truss members whose failure may significantly affect the system redundancy. The system redundancy is then measured by the remaining load capacity of a damaged bridge after losing one of the critical members. The bridge load capacity is checked using 3D models with nonlinear features that can capture the progression of yielding and buckling in a bridge system. The modeling techniques are validated through the case studies of the I-35W Bridge and one test span of the Milton-Madison Bridge. Reasonable correlations are demonstrated between the models and the measured data for these two bridges both in an undamaged and in a damaged state. The feasibility of the proposed methodology for system redundancy evaluation is examined by applying the methodology blindly to two other simple truss bridges. The application shows that the proposed methodology can efficiently measure the system redundancy. To improve the system redundancy, this research also proposes sample retrofit strategies for the four example bridges. / Ph. D.

Page generated in 0.0311 seconds