Spelling suggestions: "subject:"deboltzmann law"" "subject:"theboltzmann law""
1 |
The Thermodynamic Interaction of Light with MatterAlhanash, Mirna January 2019 (has links)
Light is electromagnetic radiation that could be shown in a spectrum with a wide range of wavelengths. Blackbody radiation is a type of thermal radiation and is an important topic to explore due to it being an ideal body that materials’ properties are often described in comparison to it. Therefore, it helps in understanding how materials behave on the quantum level. One must understand its interaction with light spectrum and how electron excitation happens. Thus, concepts such as Planck’s law, energy quantization and band theory will be discussed to try to grasp of how light interacts with materials.
|
2 |
Numerical Analysis of Non-Fickian Diffusion with a General SourceTiwari, Ganesh 01 May 2013 (has links)
The inadequacy of Fick’s law to incorporate causality can be overcome by replacing it with the Green–Naghdi type II (GNII) flux relation. Combining the GNII assumption and conservation of mass leads to [see document for equation] where r (x, t) is the density function, S(p) is a source term and c¥ is a positive constant which carries (SI) units of m/sec. A general source term given by [see document for equation] is proposed. Here, the constants y and ps are the rate coefficient and saturation density respectively. The travelling wave solutions and numerical analysis of four special cases of equation (2), namely: Pearl-Verhulst Growth law, Zel’dovich Law, Newmann Law and Stefan- Boltzmann Law are investigated. For both analysis, results are compared with the available literature and extended for other cases. The numerical analysis is carried out by imposing well-studied Initial Boundary Value Problem and implementing a built-in method in the software package Mathematica 9. For Pearl-Verhulst source type, the results are compared to those found in literature [1]. Confirming the validity of built-in method for Pearl-Verhulst law, the generic built-in method is extended to study the transient signal response for similar initial boundary value problems when the source terms are Zel’dovich law, Newmann law and Stefan-Boltzmann law.
|
3 |
Bezdotykové měření povrchových teplot ve strojírenství / Contactless measurement of surface temperatures in mechanical engineeringAnaxagorou, Georgios January 2010 (has links)
his Diploma thesis deals with non-contact measurement of surface temperatures. Describes the basic physical principles by which individual instruments are designed, their technical parameters and compares the different types. It deals with the applications of this technology in various fields of human activity and especially its use in engineering.
|
Page generated in 0.2804 seconds