Spelling suggestions: "subject:"tem cell agonist cocktail"" "subject:"stem cell agonist cocktail""
1 |
Enabling the Next Generation of Human Induced Pluripotent Stem Cell Derived Hematopoietic Stem Cell-Based TherapiesWong, Casey 23 August 2023 (has links)
Human induced pluripotent stem cells (iPSCs) represent a scalable cell source for the generation of hematopoietic progenitor cells (iHPCs); however, a lack of efficient iHPC expansion in vitro currently limits translational applications. To address this translational bottleneck, we assessed a panel of stem cell agonist cocktails (SCACs), originally developed to enhance cord-blood derived HSPC (CB-HSPC) expansion, on iHPC expansion. Three SCACs and GAS6 (X2A, X2A+GAS6, SM6, or SMA) were supplemented during iHPC differentiation and subsequent expansion using the STEMdiff™ Hematopoietic Kit. This monolayer differentiation strategy yielded a population of CD34⁺CD43⁺ and CD45⁺CD34⁺ iHPC. SCAC supplementation during iHPC differentiation yielded up to 2.5-fold higher frequency of CD34⁺CD43⁺ hematopoietic progenitors and up to 2.9-fold higher frequency of CD45⁺CD34⁺CD45RA⁻CD90⁺ HSC-like cells compared to non-treated controls. Subsequent SCAC supplementation during 2 weeks of expansion culture also significantly increased iHPC expansion (X2A+GAS6: 3.8-fold, X2A: 3.5-fold, SM6: 2.8-fold, SMA: 2.0-fold). The expanded iHPCs retained high levels of CD34⁺CD43⁺ expression but we observed an increase in the expansion of HSC-like cell fraction. The collective expansion observed with the SCACs was 1.5- to 2.8-fold higher than UM171 treatment alone. Furthermore, all SCAC-supplemented iHPCs retained multilineage potency, producing erythroid and granulocyte-macrophage progenitors in CFU assays. However, prolonged expansion, beyond 7 days, reduced multilineage potential, indicating a limited expansion window. Although optimal timing and composition of SCAC supplementation remains to be refined, these results highlight that exploiting the additive and synergistic effects of multiple small molecules represents a promising approach for enhancing iHPC expansion yields and biomanufacturing.
|
Page generated in 0.0812 seconds