Spelling suggestions: "subject:"stemphylium blight"" "subject:"stemhylium blight""
1 |
Epidemiology of Stemhylium blight on lentil (<i>Lens culinaris</i>) in SaskatchewanMwakutuya, Edmore 21 April 2006
Stemphylium blight is a defoliating fungal disease caused by <i>Stemphylium botryosum</i>. It has become more prevalent in Saskatchewan. Although not much is known about the biology of the fungus, increasing lentil (Lens culinaris) yield losses of up 62% have been reported in Bangladesh and India. The infection of lentil by <i>S. botryosum</i> was investigated under a range of temperatures (5 to 30°C), wetness periods (0 to 48 h) and wetness periods interrupted by dry periods of 6 to 24 h. The experiments involved testing the impact of environmental conditions on germination of conidia on glass slides and stemphylium blight infection on lentil (cv. CDC Milestone). Generalised linear models and non-parametric tests were used to determine the effects of these factors on conidial germination and disease development. Infection levels increased with increasing temperature and wetness duration. A latent period of 48 h was observed at 25°C and 30°C under continuous wetness. The duration of the latent period increased with decreasing temperatures and decreasing wetness duration. <i>S. botryosum</i> required warm temperatures (above 25°C) and a minimum wetness period of 8 h for optimal disease development. Low levels of infection were observed within the first 2 h of incubation at 10°C and increased with longer wetting periods up to 48 h and temperatures up to 30°C. The pathogen could maintain infectivity during interrupted wetness periods despite its requirement for prolonged wetness periods. Infection levels were not significantly affected by interrupting dry periods of 6 to 24 h although long dry periods (24 h) combined with higher temperatures (30°C) resulted in a decrease in stemphylium blight severity. Germination studies on glass slides supported these findings. Response surface models were developed that provided a good fit for the response of conidial germination to temperature and wetness duration. The coefficients of determination for the regression of observed against predicted effects ranged from 0.88 to 0.97. The general additive model could also be used to predict stemphylium blight severity responses to temperature and wetness duration (scaled deviance = 1.04). However, that model tended to overestimate infection levels especially at lower temperatures. The coefficients of determination for the observed against predicted effects at 5 to 30ºC ranged from 0.77 to 0.92 for the general additive model.
|
2 |
Genetics of resistance to Stemphylium leaf blight of lentil (<i>Lens culinaris</i>) in the cross barimasur-4 x CDC milestoneKumar, Pramod 15 August 2007
Stemphylium blight of lentil caused by <i>Stemphylium botryosum</i> Wallr., is a serious problem in Bangladesh, northeast India and Nepal causing more than 60 % yield losses under epidemic conditions. The pathogen started to appear on lentil in Saskatchewan in recent years and is widely distributed throughout western Canada but it is not well understood. An investigation of inheritance of resistance to stemphylium blight was done in the lentil cross Barimasur-4 × CDC Milestone. In order to develop a reliable indoor screening technique for this inheritance study, a suitable isolate of <i>Stemphylium botryosum</i>, a suitable culture medium for inoculum production and an appropriate plant age for indoor inoculation were identified. The maximum differential of disease severity was observed when lentil genotypes were inoculated at 14 days after planting (DAP). At 14 DAP, lentil plants rapidly defoliated but were capable of regrowth which caused variability in scoring for disease reaction. Inoculation at 42 DAP, close to the flowering stage, was found to be better for consistently scoring disease reaction. V8P medium was most suitable for inducing conidia production. Based on ability to sporulate, the isolate SB-19 from Saskatchewan was identified as suitable for conducting genetic studies of resistance to stemphylium blight. It was compared to isolate SB-BAN from Bangladesh for aggressiveness on two lentil cultivars. The SB-BAN isolate was found to be more aggressive. A preliminary screening of local and exotic germplasm done with the two isolates revealed considerable variability for disease resistance. Resistance to <i>S. botryosum</i> appeared to be quantitatively inherited in the cross Barimasur-4 × CDC Milestone according to both field and indoor screenings. The results of this study also confirmed that Precoz, one of the parents of Barimasur-4, was resistant to <i>S. botryosum</i>.
|
3 |
Epidemiology of Stemhylium blight on lentil (<i>Lens culinaris</i>) in SaskatchewanMwakutuya, Edmore 21 April 2006 (has links)
Stemphylium blight is a defoliating fungal disease caused by <i>Stemphylium botryosum</i>. It has become more prevalent in Saskatchewan. Although not much is known about the biology of the fungus, increasing lentil (Lens culinaris) yield losses of up 62% have been reported in Bangladesh and India. The infection of lentil by <i>S. botryosum</i> was investigated under a range of temperatures (5 to 30°C), wetness periods (0 to 48 h) and wetness periods interrupted by dry periods of 6 to 24 h. The experiments involved testing the impact of environmental conditions on germination of conidia on glass slides and stemphylium blight infection on lentil (cv. CDC Milestone). Generalised linear models and non-parametric tests were used to determine the effects of these factors on conidial germination and disease development. Infection levels increased with increasing temperature and wetness duration. A latent period of 48 h was observed at 25°C and 30°C under continuous wetness. The duration of the latent period increased with decreasing temperatures and decreasing wetness duration. <i>S. botryosum</i> required warm temperatures (above 25°C) and a minimum wetness period of 8 h for optimal disease development. Low levels of infection were observed within the first 2 h of incubation at 10°C and increased with longer wetting periods up to 48 h and temperatures up to 30°C. The pathogen could maintain infectivity during interrupted wetness periods despite its requirement for prolonged wetness periods. Infection levels were not significantly affected by interrupting dry periods of 6 to 24 h although long dry periods (24 h) combined with higher temperatures (30°C) resulted in a decrease in stemphylium blight severity. Germination studies on glass slides supported these findings. Response surface models were developed that provided a good fit for the response of conidial germination to temperature and wetness duration. The coefficients of determination for the regression of observed against predicted effects ranged from 0.88 to 0.97. The general additive model could also be used to predict stemphylium blight severity responses to temperature and wetness duration (scaled deviance = 1.04). However, that model tended to overestimate infection levels especially at lower temperatures. The coefficients of determination for the observed against predicted effects at 5 to 30ºC ranged from 0.77 to 0.92 for the general additive model.
|
4 |
Genetics of resistance to Stemphylium leaf blight of lentil (<i>Lens culinaris</i>) in the cross barimasur-4 x CDC milestoneKumar, Pramod 15 August 2007 (has links)
Stemphylium blight of lentil caused by <i>Stemphylium botryosum</i> Wallr., is a serious problem in Bangladesh, northeast India and Nepal causing more than 60 % yield losses under epidemic conditions. The pathogen started to appear on lentil in Saskatchewan in recent years and is widely distributed throughout western Canada but it is not well understood. An investigation of inheritance of resistance to stemphylium blight was done in the lentil cross Barimasur-4 × CDC Milestone. In order to develop a reliable indoor screening technique for this inheritance study, a suitable isolate of <i>Stemphylium botryosum</i>, a suitable culture medium for inoculum production and an appropriate plant age for indoor inoculation were identified. The maximum differential of disease severity was observed when lentil genotypes were inoculated at 14 days after planting (DAP). At 14 DAP, lentil plants rapidly defoliated but were capable of regrowth which caused variability in scoring for disease reaction. Inoculation at 42 DAP, close to the flowering stage, was found to be better for consistently scoring disease reaction. V8P medium was most suitable for inducing conidia production. Based on ability to sporulate, the isolate SB-19 from Saskatchewan was identified as suitable for conducting genetic studies of resistance to stemphylium blight. It was compared to isolate SB-BAN from Bangladesh for aggressiveness on two lentil cultivars. The SB-BAN isolate was found to be more aggressive. A preliminary screening of local and exotic germplasm done with the two isolates revealed considerable variability for disease resistance. Resistance to <i>S. botryosum</i> appeared to be quantitatively inherited in the cross Barimasur-4 × CDC Milestone according to both field and indoor screenings. The results of this study also confirmed that Precoz, one of the parents of Barimasur-4, was resistant to <i>S. botryosum</i>.
|
Page generated in 0.0543 seconds