• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Copper-Based N-Heterocyclic Carbene Complexes for Catalytic Enantioselective Conjugate Additions of Alkyl-, Aryl- and Vinyl-Based Nucleophiles to Form All-Carbon Quaternary Stereogenic Centers

May, Tricia Lee January 2011 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1 Enantioselective Conjugate Additions of Carbon Nucleophiles to Activated Olefins: Preparation of Enantioenriched Compounds Containing All-Carbon Quaternary Stereogenic Centers. Methods for enantioselective conjugate addition of nucleophiles to activated olefins generating products containing all-carbon quaternary stereogenic centers are critically reviewed. Enantioselective conjugate addition has been shown to be a powerful and concise approach to construct carbon-carbon bonds to prepare compounds containing sterically hindered stereogenic centers and has seen great advances in the past several years. Owing to the difficult nature of additions to relatively unreactive conjugate acceptors, compared to additions generating tertiary stereogenic centers, and construction of a sterically-hindered bond, in many cases, new and active catalysts had to be developed. The review discusses the areas where significant advances have been made as well as current limitations and future outlook. Chapter 2 Development of New and Active Catalysts for Cu-Catalyzed Enantioselective Conjugate Addition of Alkyl- and Arylzinc Reagent. Through development of new chiral catalysts, we have found an active and enantiodiscriminating bidentate, sulfonate-containing NHC-Cu catalyst that effects enantioselective conjugate addition of alkyl- and arylzinc reagents on notoriously difficult trisubstituted cyclic enones. Products are prepared with high levels of selectivity and participate in a variety of further functionalizations. The enantioselective additions are efficient and practical, not requiring rigorously anhydrous or oxygen-free conditions. Chapter 3 Cu-Catalyzed Enantioselective Conjugate Addition of Alkyl- and Arylaluminum Reagents to Trisubstituted Enones. Outlined in this chapter is the first effective solution for Cu-catalyzed enantioselective addition of alkyl and aryl nucleophiles to trisubstituted cyclopentenones generating products bearing a &beta;-all-carbon quaternary stereogenic center. Products are obtained in up to 97% yield and 99:1 er, only requiring 5 mol % of an in situ generated Cu-NHC catalyst. The methodology was highlighted as one of the key steps in the total synthesis of clavirolide C. Not only five-membered rings, but six- and seven-membered rings serve as proficient partners in the enantioselective process. Moreover, in cases for the enantioselective aryl addition, in situ prepared Me<sub>2</sub>AlAr can be used without purification, filtration, or isolation, only requiring the corresponding aryl halides. The additions have also been extended to trisubstituted unsaturated lactones and chromones. Chapter 4 Cu-Catalyzed Enantioselective Conjugate Addition of Vinylaluminum Reagents to Cyclic Trisubstituted Enones. An enantioselective protocol for the formation of &beta;,&beta;-disubstituted cyclic ketones containing a synthetically versatile vinylsilane is disclosed. Enantioselective conjugate addition of in situ prepared silyl-substituted vinylaluminum reagents to &beta;,&beta;-unsaturated ketones promoted by 5 mol % of chiral Cu-NHC complexes delivers desired products with high efficiency (up to 95% yield after purification) and enantioselectivities (up to >98:<2 er). Several functionalizations utilizing the vinylsilanes, vicinal to an all-carbon quaternary stereogenic center, are shown, including an oxidative rearrangement, vinyl iodide formation and protodesilylation, accessing products not previously attainable. Furthermore, the enantioselective protocol is demonstrated as the key transformation in the total synthesis of riccardiphenol B. / Thesis (PhD) — Boston College, 2011. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Cu-Catalyzed Enantioselective Allylic Substitutions with Organomagnesium and Organoaluminum Reagents Promoted by N-Heterocyclic Carbenes for the Formation of Quaternary Stereogenic Centers

Mandai, Kyoko January 2010 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter One: An overview of Cu-catalyzed enantioselective allylic substitutions with organometallic reagents. Chapter Two: Development of Cu-catalyzed enantioselective allylic alkylations of allylic chlorides with Grignard reagents for the formation of all-carbon quaternary stereogenic centers is disclosed. Chapter Three: Development of Cu-catalyzed enantioselective allylic substitutions of allylic phosphates with alkyl, aryl, and heterocyclic aluminum reagents for the formation of quaternary stereogenic centers is discussed. / Thesis (MS) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Étude de l’issue diastéréomérique impliquant la réduction radicalaire d’α-bromoesters adjacents à un tétrahydropyrane substitué

Viens, Frédérick 09 1900 (has links)
Cet ouvrage traite de la formation diastéréosélective de tétrahydropyranes 3,7-cis et 3,7-trans polysubstitués. Des méthodologies de cycloétherification et de C-glycosidation en tandem avec une réduction radicalaire y sont décrites (pyranes 3,7- trans) tandis qu’une haloéthérification en tandem avec le même processus radicalaire conduit aux pyranes 3,7-cis. Suite à des travaux antérieurs du laboratoire, des études ont été réalisées afin de comprendre l’influence de la stéréochimie des substituants en position C3, C6, C7 et C8 sur l’issue diastéréochimique lors d’un transfert d’hydrure sous contrôle exocyclique sur un centre radicalaire adjacent à un tétrahydropyrane (C2). Ces études ont permis de solutionner les problèmes de diastéréosélectivité rencontrés lors des réductions radicalaires des centres en C2 de divers fragments élaborés d’ionophores (e.g. zincophorine, salinomycine, narasine…) réalisées par notre groupe. Des études conformationnelles réalisées sur des pyranes di- ou tri-substitués ont permis de comprendre les diastéréosélectivités notées lors du processus radicalaire en fonction des stéréochimies relatives des centres précédemment cités. En particulier, l’utilisation d’un bicycle rigide (trans-octahydrochromène) a permis de montrer l’importance du positionnement spatial (axial ou équatorial) de la chaîne portant le centre radicalaire. Par la suite, nous avons pu mettre en évidence une amplification des ratios en faveur du produit de réduction radicalaire 2,3-anti lorsque la réaction est réalisée en présence d’un acide de Lewis monodentate encombré (MAD). L’optimisation du contrôle endocyclique lors du transfert d’hydrure a permis de générer la stéréochimie complémentaire 2,3-syn. L’utilisation du TTMSS comme source d’hydrure combinée à l’utilisation d’un acide de Lewis bidentate tel que MgBr2·OEt2 a permis l’obtention d’excellentes sélectivités en faveur du produit endocyclique. Des études RMN 13C ainsi que le titrage des ions Mg2+ en solution ont été effectués afin de comprendre la nature des complexes impliqués. Finalement, ces études ont permis la formation stéréocontrôlée de centres stéréogéniques adjacents à un THP, motifs fréquement rencontrés dans certains policétides. Elles permettent ainsi d’envisager la synthèse de polyéthers de type ionophore et d’autres molécules d’intérêt biologique. / This work describes the diastereoselective formation of polysubstituted 3,7-cis and 3,7-trans tetrahydropyrans. Tandem radical reduction/cycletherification and tandem radical reduction/C-glycosidation methodologies are depicted for 3,7-trans pyrans formation while tandem radical reduction/haloetherification lead to 3,7-cis pyrans. Following previous work in the laboratory, studies have been conducted to better understand the stereochemical influence that substituents in the C3, C6, C7 and C8 positions have on the diastereoselectivity of a hydride transfer radical reaction on a radical center with an adjacent tetrahydropyran (exocyclic control). These studies have helped to solve diastereoselectivity problems encountered with C2 radical reductions in different ionophore fragments (e.g. zincophorin, salinomycin, narasin ...) that were investigated by our group. Conformational studies performed on di-or tri-substituted pyrans have helped to understand the diastereoselectivities observed in the radical process of the stereochemical centers mentioned above. In particular, the use of a bicycle frame (trans-octahydrochromene) showed the importance of the spatial positioning (axial or equatorial) of the radical center chain. Subsequently, we were able to demonstrate an increase ratios for the 2,3-anti radical reduction product when the reaction was performed in the presence of a bulky monodentate Lewis acid (MAD). Optimization of hydride transfer under endocyclic control has generated the complementary 2,3-syn stereochemistry. Use of TTMSS as a hydride source combined with the use of a bidentate Lewis acid such as MgBr2·OEt2 allowed for the formation of endocyclic products with excellent selectivities. 13C NMR studies and titration of Mg2+ ions in solution were performed to understand the nature of the complexes involved. Finally, these studies led to the stereocontrolled formation of stereogenic centers adjacent to a THP, motifs frequently encountered in polyketides. This work thus involves the synthesis of polyether ionophore-type fragments and other molecules of biological interest.
4

Étude de l’issue diastéréomérique impliquant la réduction radicalaire d’α-bromoesters adjacents à un tétrahydropyrane substitué

Viens, Frédérick 09 1900 (has links)
Cet ouvrage traite de la formation diastéréosélective de tétrahydropyranes 3,7-cis et 3,7-trans polysubstitués. Des méthodologies de cycloétherification et de C-glycosidation en tandem avec une réduction radicalaire y sont décrites (pyranes 3,7- trans) tandis qu’une haloéthérification en tandem avec le même processus radicalaire conduit aux pyranes 3,7-cis. Suite à des travaux antérieurs du laboratoire, des études ont été réalisées afin de comprendre l’influence de la stéréochimie des substituants en position C3, C6, C7 et C8 sur l’issue diastéréochimique lors d’un transfert d’hydrure sous contrôle exocyclique sur un centre radicalaire adjacent à un tétrahydropyrane (C2). Ces études ont permis de solutionner les problèmes de diastéréosélectivité rencontrés lors des réductions radicalaires des centres en C2 de divers fragments élaborés d’ionophores (e.g. zincophorine, salinomycine, narasine…) réalisées par notre groupe. Des études conformationnelles réalisées sur des pyranes di- ou tri-substitués ont permis de comprendre les diastéréosélectivités notées lors du processus radicalaire en fonction des stéréochimies relatives des centres précédemment cités. En particulier, l’utilisation d’un bicycle rigide (trans-octahydrochromène) a permis de montrer l’importance du positionnement spatial (axial ou équatorial) de la chaîne portant le centre radicalaire. Par la suite, nous avons pu mettre en évidence une amplification des ratios en faveur du produit de réduction radicalaire 2,3-anti lorsque la réaction est réalisée en présence d’un acide de Lewis monodentate encombré (MAD). L’optimisation du contrôle endocyclique lors du transfert d’hydrure a permis de générer la stéréochimie complémentaire 2,3-syn. L’utilisation du TTMSS comme source d’hydrure combinée à l’utilisation d’un acide de Lewis bidentate tel que MgBr2·OEt2 a permis l’obtention d’excellentes sélectivités en faveur du produit endocyclique. Des études RMN 13C ainsi que le titrage des ions Mg2+ en solution ont été effectués afin de comprendre la nature des complexes impliqués. Finalement, ces études ont permis la formation stéréocontrôlée de centres stéréogéniques adjacents à un THP, motifs fréquement rencontrés dans certains policétides. Elles permettent ainsi d’envisager la synthèse de polyéthers de type ionophore et d’autres molécules d’intérêt biologique. / This work describes the diastereoselective formation of polysubstituted 3,7-cis and 3,7-trans tetrahydropyrans. Tandem radical reduction/cycletherification and tandem radical reduction/C-glycosidation methodologies are depicted for 3,7-trans pyrans formation while tandem radical reduction/haloetherification lead to 3,7-cis pyrans. Following previous work in the laboratory, studies have been conducted to better understand the stereochemical influence that substituents in the C3, C6, C7 and C8 positions have on the diastereoselectivity of a hydride transfer radical reaction on a radical center with an adjacent tetrahydropyran (exocyclic control). These studies have helped to solve diastereoselectivity problems encountered with C2 radical reductions in different ionophore fragments (e.g. zincophorin, salinomycin, narasin ...) that were investigated by our group. Conformational studies performed on di-or tri-substituted pyrans have helped to understand the diastereoselectivities observed in the radical process of the stereochemical centers mentioned above. In particular, the use of a bicycle frame (trans-octahydrochromene) showed the importance of the spatial positioning (axial or equatorial) of the radical center chain. Subsequently, we were able to demonstrate an increase ratios for the 2,3-anti radical reduction product when the reaction was performed in the presence of a bulky monodentate Lewis acid (MAD). Optimization of hydride transfer under endocyclic control has generated the complementary 2,3-syn stereochemistry. Use of TTMSS as a hydride source combined with the use of a bidentate Lewis acid such as MgBr2·OEt2 allowed for the formation of endocyclic products with excellent selectivities. 13C NMR studies and titration of Mg2+ ions in solution were performed to understand the nature of the complexes involved. Finally, these studies led to the stereocontrolled formation of stereogenic centers adjacent to a THP, motifs frequently encountered in polyketides. This work thus involves the synthesis of polyether ionophore-type fragments and other molecules of biological interest.

Page generated in 0.0764 seconds