• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Implantation et validation d’un modèle Monte Carlo du Cyberknife dans un outil de calcul de dose clinique

Zerouali Boukhal, Karim 12 1900 (has links)
Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada. / Le Cyberknife (Accuray, Sunnyvale, CA) est un appareil de radiochirurgie stéréotaxique sans cadre. Il a été développé pour administrer de fortes doses dans des volumes restreints. Aussi, pour obtenir une conformation optimale de traitement, des champs circulaires de petites dimensions sont utilisés (\phi = 0,5 à 6 cm). L'étude dosimétrique de ces petits champs doit être menée selon de nouveaux standards puisque ceux-ci échappent aux définitions du TG-51. L'objectif de ce projet est d'implanter une plateforme de calcul de dose de type Monte Carlo pour le CyberKnife en clinique. Il s'articule autour de deux réalisations principales. Tout d'abord, une caractérisation dosimétrique du modèle Monte Carlo de l'accélérateur linéaire du CyberKnife a été menée à travers des simulations Monte Carlo générées par le moteur de EGSnrc. Cette étude est basée sur la caractérisation de la réponse d'un détecteur à un champ de type CK à partir de simulations EGS_chamber. Cette approche permet de prendre en compte l'impact du détecteur sur les mesures expérimentales. Cet aspect est d'autant plus important que le modèle Monte Carlo de l'accélérateur est validé à partir de mesures expérimentales. Les résultats obtenus montrent une bonne concordance, <1% ou 1 mm, entre les mesures expérimentales et les données de simulations pour les grands champs. Pour les champs de diamètre < 12,5 mm, le modèle est moins exact et une correction est appliquée pour atteindre une différence de <1% ou 1 mm. Deuxièmement, ce modèle validé du CK a été implanté dans un cadre de calcul Monte Carlo complet. Une plateforme de calcul dédiée aux calculs Monte Carlo, WebTPS, a été adaptée aux calculs de dose CK. Cette plateforme reçoit les données relatives au plan de traitement et lance des calcul EGSnrc sur un superordinateur. Cette approche tend à réduire les approximations lors de l'évaluation dosimétrique de plans de traitements cliniques. Une incertitude inférieure à 1% peut être atteinte en deux heures de calcul. Ce projet a donc pour objectif de développer une référence clinique pour le calcul de dose dans le cadre de la radiochirurgie stéréotaxique. L'outil WebTPS pourrait être particulièrement utile en clinique, l'algorithme de calcul de dose du CK étant limité dans plusieurs situations de traitement. / Purpose: The scope of this study is to implement a clinical Monte Carlo dose calculation system based on the EGSnrc engine. This web-based tool will be mostly used to evaluate clinical treatment plans in highly heterogeneous phantoms. Methods: The Monte Carlo calculation tool is based on the DOSXYZnrc user code. The platform automatically converts CyberKnife clinical plan to the user code input files. Phantoms can be created from HU to ED curves or by manually assigning material using medical contours. Parallel computation is made on a Compute Canada high-performance cluster to reduce simulation time. A Monte Carlo CyberKnife model is built on BEAMnrc user code using the manufacturer specifications. Simulated and experimental data is compared to estimate the electron beam parameters. The beam energy estimation is based on percent depth dose (PDD) comparison while the full width at half max (FWHM) is validated by output factor (OF) and off-axis ratio (OAR). An EGS_chamber model of the PTW60012 diode is used in the OF calculation. A set of phase-spaces is generated from the optimal model and for each collimator to calculate dose contribution from each incident beam. Results: The linac model optimisation yielded a 0.5% PDD agreement between experimental and simulation data, and a 0.5% or 1 mm for OAR. DOSxyz simulation of full treatment plan, based on the preliminary CyberKnife model, were achieved. Total Monte Carlo dose calculation have been achieved for heterogeneous phantoms. Uncertainty under 1% can be achieved for less than 2 hour of computing time. However, computing time estimation is nontrivial due to its dependence on cluster availability. Conclusion: This work aims to develop a suitable tool for reference plan dose calculation. This web-based tool would be used in several clinical and research applications where the CyberKnife embedded ray-tracing algorithm would show significant limitations. Because it is destined to a clinical use, the whole dose calculation system will be rigorously validated.
12

Evaluation of a Novel Reconstruction Framework for Gamma Knife Cone-Beam CT - The Impact of Scatter Correction and Noise Filtering on Image Quality and Co-registration Accuracy / Utvärdering av nytt rekonstruktionsramverk för Cone-Beam CT på Gammakniven - Effekten av spridningskorrigering och brusfiltrering på bildkvalitet och noggrannhet av co-registrering

Hägnestrand, Ida January 2023 (has links)
The Gamma Knife is a non-invasive stereotactic radiosurgery system used for treatments of deep targets in the brain. Accurate patient positioning is needed for precise radiation delivery to the target. The two latest versions of the Gamma Knife allow fractionated treatment by co-registering Cone-beam computed tomography (CBCT) images of the patient's position in the Gamma Knife with a diagnostic magnetic resonance (MR) image used for treatment planning. However, CBCT images often suffer from artifacts that degrade image quality, which may result in less accurate co-registration. This thesis project investigates the potential of a new reconstruction framework developed by Elekta, which incorporates scattering correction and noise filters, for the reconstruction of Gamma Knife CBCT images. The performance of the new reconstruction framework, along with its noise filter and scatter correction, is quantified using image quality metrics of phantoms, including contrast, uniformity, spatial resolution, and CT-number accuracy. Additionally, brain CBCT images of five patients are co-registered with their diagnostic MR images, and the mean target registration error is measured. The results indicate that the new reconstruction framework, without using scatter correction and noise filtering, performs equally well as the current framework in reconstructing Gamma Knife CBCT images, as it achieved similar image quality and co-registration accuracy. However, when the scatter correction was used, there were improvements in image uniformity and CT-number accuracy without compromising spatial resolution. Additionally, the introduction of a noise filter resulted in an improved contrast-to-noise ratio and low contrast visibility with minimal compromise of spatial resolution. Despite these image quality enhancements, there were no consistent improvements in co-registration accuracy, indicating that the co-registration is not sensitive to scatter or noise artefacts. / Gammakniven är en medicinteknisk apparat som används för icke-invasiv stereotaktisk strålkirurgi vid behandling av djupa mål i hjärnan. För att uppnå precision i strålbehandlingen krävs noggrann patientpositionering. De två senaste versionerna av Gammakniven tillåter fraktionerad behandling genom att co-registrera cone-beam computed tomography (CBCT)-bilder av patientens position i Gammakniven med en diagnostisk magnetresonans (MR)-bild som används för behandlingsplanering. Tyvärr lider CBCT-bilder ofta av artefakter som kan försämra bildkvaliteten och därmed minska precisionen i co-registreringen. Detta examensarbete undersöker ett nytt rekonstruktionsramverk som utvecklats av Elekta. Det nya rekonstruktionsramverket och dess tillhörande brusfilter och spridningskorrigering utvärderas för rekonstruktion av Gammaknivens CBCT bilder med hjälp av bildkvalitetsmått för fantomer, såsom kontrast, uniformitet, spatial upplösning och noggrannhet i CT-nummer. Dessutom co-registreras CBCT-bilder från fem patienter med deras diagnostiska MR-bilder, och det genomsnittliga registreringsfelet mäts. Resultaten visar att det nya rekonstruktionsramverket, utan användning av spridningskorrigering och brusfiltrering, presterar lika bra som det nuvarande ramverket för rekonstruktion av CBCT-bilder från Gammakniven. Båda ramverken ger liknande bildkvalitet och noggrannhet i co-registreringen av bilderna. Vid användning av spridningskorrigering observerades förbättringar i uniformiteten och noggrannheten i CT-nummer utan att den spatiala upplösningen försämrades. Införandet av brusfilter resulterade i ett förbättrat kontrast-brus-förhållande och synlighet av svaga kontrastskillnader med endast lite avkall på den spatiala upplösningen. Trots dessa förbättringar i bildkvaliteten observerades ingen konsekvent förbättring av noggrannheten i co-registreringen av bilderna, vilket tyder på att co-registreringen inte påverkas av spridnings- eller brusartefakter i stor utsträckning.

Page generated in 0.0528 seconds