• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An NMR Investigation of Aryl Mercury Compounds

Rowland, Keith E. (Keith Edward) 05 1900 (has links)
A variable temperature ^13 C and ^199 Hg NMR study has been conducted for diphenyl-, bis(o-tolyl)-, bis(m-tolyl)-, and bis(2, 6-xylyl)mercury in dimethyl sulfoxide and 1,1,2,2 tetrachloroethane; ^13 C T1 relaxation times are reported as a function of temperature. Barriers to rotation of the aryl rings are obtained. Chemical shifts and couplings in CDCl_3 are given for bis(p-tolyl)-, bis(2, 5-xylyl)-, bis(mesityl)-,phenyl(o-tolyl)-, phenyl(m-tolyl)mercury, and the compounds listed above. The steric interactions of these aryl mercury compounds are discussed.
2

The Effect of Biopolymer Properties on Bacterial Adhesion: an Atomic Force Microscopy (AFM) Study

Abu-Lail, Nehal Ibrahim 18 September 2003 (has links)
"The effect of bacterial surface biopolymers on bacterial adhesion to surfaces was studied through experiments and modeling. Atomic Force Microscopy (AFM) provided the tool to measure the interaction forces between different bacterial cells and silicon nitride tips under different chemical conditions at a nanoscopic level. Two bacterial strains were considered: Pseudomonas putida KT2442 and Escherichia coli K-12 JM109. This study addressed the following issues: 1) the effect of solution ionic strength and solvent polarity on adhesion between Pseudomonas putida KT2442 and the silicon nitride AFM tip, 2) role of heterogeneity of bacterial surface biopolymers on bacterial adhesion, 3) role of lipopolysaccharides (LPS) on adhesion at three different scales: continuous, batch, and nanoscale, and 4) nature of interactions between E. coli JM109 and a model surface (silicon nitride tip). To address the first issue, formamide, water, and methanol were used to investigate the effect of polarity on surface characteristics of biopolymers on the bacterial surface while a range of salt concentrations between that of water to 1 M KCl were used to study the effect of ionic strength. The adhesion increased with decreasing polarity of the solvent, indicating that the polymers on the bacterial surface are hydrophilic in nature. The adhesion was slightly affected by ionic strength variations up to a concentration of 0.1 M KCl; this may have been due to the fact that the ionic concentration in the solution did not counterbalance the ionic concentration in the biopolymer brush on the bacterial surface. However, a dramatic increase in the adhesion magnitude was observed when the salt concentration increased above 0.1 M KCl. This transition in adhesion with ionic strength from a low to high value induced a transition in the elasticity of the bacterial surface biopolymers. The biopolymer brush layer did change from rigid to soft with increasing the ionic strength. The elasticity was quantified mainly by the use of the freely jointed chain (FJC) model. Our interest in investigating the role of heterogeneity on adhesion developed from the results of the first study. The bacterial surface polymers were thought to be different in their chemical and physical nature since they were found to span a range of segment lengths. Analyzing the adhesion forces for P. putida KT2442 showed that the bacterial surface is heterogeneous. The heterogeneity was evident on the same cell surface and between different cells from the same population. To resolve the third issue, approximately, 80% of the surface LPS of E. coli K-12 JM109 were removed by treating the cells with 100 mM ethylenediaminetetraacetic acid (EDTA). The effect of LPS removal on the adhesion of the cells to the silicon nitride tip was studied in water and phosphate buffered silane (PBS). The adhesion results from the AFM experiments were compared to batch retention experiments with glass as the substratum and column attachment experiments with columns packed with quartz sand. LPS controlled bacterial adhesion to the different surfaces in the study at three scales: batch, continuous, and nano-scale. Finally, the nature of interactions between E. coli JM109 and a model surface (silicon nitride tip) were investigated in solvents of varying polarity (formamide, water, and methanol). The Young’s modulus of elasticity for the bacterial surface was estimated by fitting of the Hertzian model to the force-indentation curves. Young’s modulus values increased as the solvent polarity decreased, indicating a stiffer bacterial surface in lower polarity solvents. The average adhesion force in each solvent was negatively correlated with the dielectric constant of the solvent, suggesting hydrophilic biopolymers. Specific and non-specific interaction forces between the AFM tip and the biopolymers were further characterized by applying a Poisson statistical analysis to the discrete adhesion data. The specific and non-specific interaction forces were the highest in methanol (-4 and -1.48 nN respectively). These values are in accordance with the high adhesion magnitude values measured with AFM in methanol. The results of my different studies emphasized the important role of AFM in studying biological interactions to different surfaces and in characterizing bacterial surface biopolymers."
3

Carbon-Carbon Bond Forming Reactions of Metal-Bonded Hydrocarbon Groups on Ag(111): Steric, Electronic, and Carbon Hybridization Effects on the Coupling Rates

Lee, Long-chen 06 August 2006 (has links)
The alkyl substitution effects and the hybridization effects on the rate of coupling of adsorbed hydrocarbon groups on Ag(111) have been investigated under ultrahigh vacuum by temperature programmed reaction/desorption (TPR/D). For these two different issues, two types of halide precursors were used. One is to form adsorbed fragments bearing C£\(sp3) and C£\-H, the other is to yield adsorbed fragments with different hybridized £\-carbons without C£\-H. The desired hydrocarbon groups were generated on Ag(111) by the thermal dissociation of the C-X (X = I or Br) bond in the corresponding halogenated compounds. Substitution of alkyl for hydrogen in the adsorbed alkyl groups systematically raises the coupling temperature. For example, 3-pentyl groups homo-couple at temperatures ~ 70 K higher than the ethyl homo-coupling reaction. The concept of ¡§geminal repulsion¡¨ can account for our experimental results while the size and the number of the alkyl substitution groups increase. Different hybridized C£\ (metal-bonded carbon) species cause various angle strain energies in the cyclic transition state for the coupling reaction. The C£\(sp) species (CH3C¡ÝC(ad) and (CH3)3SiC¡ÝC(ad)) have rather high coupling temperatures (~ 460 K) due to the unidirectional sp orbital and the stronger Ag-C(sp) bond in the transition state. The relative rates for homo-coupling as a function of the hybridization of the metal-bound carbon follow the trend sp3 > sp2 > sp on the Ag(111) surface. Lastly, we found that the isobutyl groups undergo a £]-hydride elimination instead of homo-coupling on the Ag(111) surface. It may be due to that isobutyl groups have a total of nine £]-hydogens among all the hydrocarbon groups, which makes this rare reaction pathway possibly occur on Ag(111).

Page generated in 0.104 seconds