• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the regulatory roles of cholesterol and bile acids /

Murphy, Charlotte, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
2

Activation of Sterol Regulatory Element Binding Protein-2 By Endoplasmic Reticulum Stress

Colgan, Stephen Matthew January 2009 (has links)
<p> Cellular cholesterol homeostasis is a fundamental and highly regulated process. Transcription factors known as sterol regulatory element binding proteins (SREBP) are responsible for the expression of many genes involved in the uptake and biosynthesis of cholesterol. SREBP activation and lipid dysregulation has been associated with cellular endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). Our lab has previously reported a relationship between ER stress and SREBP activation causing lipid dysregulation and hepatic steatosis. This project was designed to elucidate the mechanism of ER stress-induced SREBP activation and determine its relationship with cellular pathologies associated with ER stress and lipid accumulation. My research has examined the mechanism by which ER stress activates SREBP-2 in various cell lines, including epithelial and macrophage cells. This research revealed that (1) ER stress-induced SREBP-2 activation is not dependent on caspases and occurs through the conventional sterol-mediated proteolytic pathway; (2) the mechanism of ER stress-induced SREBP-2 activation is sensitive to changes in ER calcium; (3) ER stress is associated with SREBP-2 activation and lipid dysregulation in a model of renal injury; and ( 4) ER stress-induced SREBP activation in vitro is not associated with lipid accumulation in macrophage foam cells. </P> <p> This project has also offered me the opportunity to further enhance our understanding of the mechanism by which ER stress causes SREBP activation in a sterolindependent manner. </P> / Thesis / Doctor of Philosophy (PhD)
3

The TRC8 hereditary kidney cancer gene product is regulated by sterols and modulates SREBP levels /

Lee, Jason Philip. January 2007 (has links)
Thesis (Ph.D. in Human Medical Genetics) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 117-126). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
4

Enhanced Liver X Receptor and Decreased Sterol Regulatory Element Binding Transcription Factor 2 Activities May Control Luteolysis of the Human Corpus Luteum

Xu, Yafei, Xu, Yafei January 2017 (has links)
The mechanisms causing luteolysis of the primate corpus luteum are unknown. There is an increase in expression of liver x receptor (LXR) target genes and reduced low density lipoprotein receptor (LDLR) during spontaneous luteolysis in primates. The LXRs belong to the nuclear receptor superfamily and increase cholesterol efflux by inducing transcription of their target genes. Uptake of cholesterol into primate luteal cells occurs primarily via LDL, and LDLR transcription is regulated by sterol regulatory element binding transcription factor 2 (SREBF2). Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) maintain luteal function by binding to the LH/CG receptor (LHCGR), which stimulates progesterone (P4) synthesis via protein kinase A (PKA). It has also been previously reported that there is an increase in 27-hydroxycholesterol (27OH) concentrations during spontaneous luteolysis in primates. Pregnenolone and P4 inhibit the enzyme activity of CYP27A1 (cytochrome p450, family 27, subfamily A, polypeptide 1), which converts cholesterol into 27OH, an oxysterol that is a natural LXR agonist and SREBF2 inhibitor. Therefore, the overall hypothesis is that LXR-induced cholesterol efflux and reduced LDL uptake via inhibition of SREBF2 activity mediate luteolysis of the human CL. The objective of study 1 is to determine the effects of LXR activation and SREBF2 inhibition on P4 production, cholesterol metabolism and gene expression; and how hCG signaling via PKA regulates these effects in human luteinized granulosa cells. Basal and hCG-stimulated P4 secretion were significantly decreased by the combined actions of the LXR agonist T0901317 (T09) and the SREBF2 inhibitor fatostatin, which was associated with alterations in cholesterol metabolism leading to reduced intracellular cholesterol storage. Expression of LXR target genes in the presence of T09 was significantly reduced by hCG, while hCG significantly increased LDLR expression. These effects of hCG were reversed by a specific PKA inhibitor. Chronic hCG exposure had similar effects on LXR target gene and LDLR expression without an exogenous LXR agonist. The objective of study 2 is to determine the effects of 27OH on P4 production and cholesterol metabolism; and to determine if inhibiting the conversion of cholesterol into pregnenolone increases LXR and decreases SREBF2 target gene expression via CYP27A1 in human luteinized granulosa cells. During luteolysis in primates and sheep, CYP27A1 expression significantly increased. 27OH significantly decreased hCG-stimulated P4 secretion and enhanced cholesterol efflux. Aminoglutethimide, which inhibits the conversion of cholesterol to pregnenolone, significantly increased ABCA1 and decreased LDLR. Knock-down of CYP27A1 resulted in a significant increase in P4 secretion, but did not prevent aminoglutethimide-induced effects on ABCA1 and LDLR. Knock-down of steroidogenic acute regulatory protein (STAR), which controls cholesterol transport into the mitochondria where CYP27A1 resides, significantly decreased LDLR transcription. Collectively, the data from study 1 support the hypothesis that LXR-induced cholesterol efflux and reduced LDL uptake via inhibition of SREBF2 activity mediates luteolysis in primates, which is reversed by hCG. Data from study 2 indicates that 27OH produced via CYP27A1 may contribute to reductions in P4 synthesis during luteolysis, partially by serving as a dual LXR agonist and SREBF2 inhibitor, although other oxysterols are also likely involved.
5

Changes in Lipid Distribution During Aging and Its Modulation by Calorie Restriction

Kim, Ji Y., Kim, Dae Hyun, Choi, Jaehun, Park, Jin K., Jeong, Kyu Shik, Leeuwenburgh, Christiaan, Yu, Byung Pal, Chung, Hae Young 01 June 2009 (has links)
Adipogenesis and ectopic lipid accumulation during aging have a great impact on the aging process and the pathogenesis of chronic diseases with age. However, at present, information on the age-related molecular changes in lipid redistribution patterns and their potential nutritional interventions is sparse. We investigated the mechanism underlying age-related lipid redistribution and its modulation using 5-, 17-, and 24-month-old male Fischer 344 rats fed ad libitum (AL) or a 3-week-long CR (40% less than AL) diet. Results revealed that the activities of adipogenic transcription factors were decreased in the white adipose tissue (WAT) of aged AL rats. In contrast, the skeletal muscle of aged AL rats showed increased fat accumulation through decreased carnitine palmitoyltransferase-1 activity, which was blunted by short-term CR. This study suggests an age-related shift in lipid distribution by reducing the adipogenesis of WAT while increasing intramyocellular lipid accumulation, and that CR can modulate age-related adipogenesis and ectopic lipid accumulation.
6

KGF Induces Lipogenic Genes Through a PI3K and JNK/SREBP-1 Pathway in H292 Cells

Chang, Yongsheng, Wang, Jieru, Lu, Xiaojun, Thewke, Douglas P., Mason, Robert J. 01 December 2005 (has links)
Lipid synthesis is required for cell growth and is subject to pharmacologic regulation. Keratinocyte growth factor (KGF) stimulates proliferation and lipogenesis in H292 cells, a pulmonary epithelial cancer cell line, but the signaling pathways are not known. KGF stimulated the expression of the transcription factors sterol-regulatory element binding protein-1 (SREBP-1), CCAAT/enhancer binding protein α (C/EBPα), and C/EBPδ and two key enzymes involved in lipogenesis, FAS and stearoyl coenzyme A desaturase-1 (SCD-1). We found that KGF induced rapid activation of Akt, p70 S6K, JNK, and extracellular signal-regulated (ERK). Induction of SREBP-1, SCD-1, and FAS by KGF was inhibited by the JNK inhibitor SP600125 and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 but not by the ERK inhibitor PD98059. Using FAS and SCD-1-luciferase promoter constructs, we observed that KGF stimulated the transcription of these promoters and that exogenous cholesterol inhibited the induction. Mutation of the SREBP-1 binding site in the SCD-1 promoter abolished the effect of KGF on SCD-1 transcription. In addition, overexpression of active SREBP-1 directly stimulated SCD-1 and FAS. Conversely, adenovirus-mediated overexpression of a dominant negative form of SREBP-1 inhibited the KGF effect on FAS and SCD-1 expression. In summary, we conclude that KGF requires both PI3K and JNK signaling pathways to induce SREBP-1, which in turn induces SCD-1 and FAS expression in H292 cells.

Page generated in 0.1542 seconds