• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Electronic System for Extracellular Neural Stimulation and Recording

Blum, Richard Alan 06 July 2007 (has links)
A system for extracellular neural interfacing that had the capability for stimulation and recording at multiple electrodes was presented. As the core of this system was a custom integrated circuit (IC) that contained low-noise amplifiers, stimulation buffers, and artifact-elimination circuitry. The artifact-elimination circuitry was necessary to prevent the activity of the stimulation buffers from interfering with the normal functioning of the low-noise amplifiers. The integrated circuits were fabricated in in a 0.35 micron CMOS process. We measured input-referred noise levels for the amplifiers as low as 3.50 microvolts (rms) in the in the bandwidth 30 Hz-3 kHz, corresponding to the frequency range of neural action potentials. The power consumption was 120 microwatts, corresponding to a noise-efficiency factor of 14.5. It was possible to resume recording signals within 2 ms of a stimulation, using the same electrode for both stimulation and recording. A filtering algorithm to remove the post-discharge artifact was also presented. The filtering was implemented using a field-programmable gate array (FPGA). The filtering algorithm itself consisted of blanking for the duration of the stimulation and artifact-elimination, followed by a wavelet de-noising. The wavelet de-noising split the signal into frequency ranges, discarded those ranges that did not correspond to neural signals, applied a threshold to the retained signals, and recombined the different frequency ranges into a single signal. The combination of the filtering with the artifact-elimination IC resulted in the capability for artifact-free recordings.
2

Restoring Thought-Controlled Movements After Paralysis: Developing Brain Computer Interfaces For Control Of Reaching Using Functional Electrical Stimulation

Young, Daniel R. 31 August 2018 (has links)
No description available.

Page generated in 0.131 seconds