• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 2
  • 1
  • Tagged with
  • 29
  • 29
  • 10
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of adding a regenerator to Kornhauser's MIT "two-space" test rig

Gidugu, Praveen. January 2008 (has links)
Thesis (M.S.)--Cleveland State University, 2008. / Abstract. Title from PDF t.p. (viewed on July 9, 2008). Includes bibliographical references (p. 100-103). Available online via the OhioLINK ETD Center. Also available in print.
12

Heat transfer from a circular cylinder subject to an oscillating crossflow as in a stirling engine regenerator

Stowe, Robert Alan January 1987 (has links)
An experiment was designed and carried out on the fundamental, but poorly understood problem of oscillating flow past a single, transverse, circular cylinder. This is an approximation of the flow about a single element in a matrix-type regenerator used in Stirling-cycle engines. The experimental rig was designed and built to allow tests to be carried out for the wide range of fluid flow parameters characteristic of various Stirling engines. The influence of these parameters on convective heat transfer rates was measured so the approximate effects of these same parameters on a Stirling engine regenerator could be determined. The main conclusion from the experiment was that average Nusselt numbers, based on test-cylinder diameter and subject to flow conditions similar to those found in Stirling engine regenerators, were 40 to 80% higher than those predicted by a steady flow correlation, for a given Reynolds number. This may be due to the high levels of turbulence generated near the test-cylinder. A secondary conclusion is that the compression and expansion of the working fluid due to a 90 degree phase angle difference between the motion of the pistons raises convective heat transfer rates from the test-cylinder substantially over the 180 degree phase angle, or "sloshing" motion case. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
13

Characterization, Analysis, and Optimization of Rotary Displacer Stirling Engines

Bagheri, Amirhossein 12 1900 (has links)
This work focuses on an innovative Rotary Displacer SE (RDSE) configuration for Stirling engines (SEs). RDSE features rotary displacers instead of reciprocating displacers (found in conventional SE configurations), as well as combined compression and expansion spaces. Guided by the research question "can RDSE as a novel configuration achieve a higher efficiency compared to conventional SE configurations at comparable operating conditions?", the goal of this study is to characterize, analyze, and optimize RDSE which is pursued in three technical stages. It is observed the RDSE prototype has an optimum phase angle of > 90° and thermal efficiency of 15.5% corresponding to 75.2% of the ideal (Carnot) efficiency at the source and sink temperatures of 98.6° C and 22.1° C, respectively. Initial results indicate that 125° phase angle provides more power than that of the theoretically optimum 90° phase angle. The results also show comparable B_n and significantly higher W_n values (0.047 and 0.465, respectively) compared to earlier studies, and suggest the RDSE could potentially be a competitive alternative to other SE configurations. Furthermore, due to lack of a regenerator, the non-ideal effects calculated in the analytical approach have insignificant impact (less than 0.03 kPa in 100 kPa). The clearance volume in the shuttled volume has a dramatic negative effect and reduces the performance up to 40%. Ultimately, utilizing CFD, it is proved that the existing geometry is relatively optimized where the optimum phase angle is 121° and geometric ratio D\/L for the displacer is 0.49.
14

Analytical Investigation of Performance of a Solar Powered Free-Piston Stirling-Stirling Heat Pump Cooling an Insulated Enclosure

Beckfeld, Gary D. 01 January 1984 (has links) (PDF)
An analytical investigation was attempted of a solar driven free-piston Stirling engine driving a second free-piston Stirling engine as a heat pump. A dynamic model and a thermodynamic model with free convection heat transfer were derived. The governing equations were programmed to obtain numerical solutions by computer. Graphs of piston displacements, volumes, pressures, mass cycles, and temperatures versus time are presented. Engine work output, operating frequencies, and efficiencies are calculated. Effects of parameter variations are presented. However, because proper phase angles could not be obtained for this model, the cooling performance of the system could not be evaluated. Limitations of the computer analysis are discussed and areas for possible further investigation are suggested
15

Second order analyses methods for stirling engine design

Snyman, H. 03 1900 (has links)
Thesis (MScIng( Mechanical Engineering)--University of Stellenbosch, 2007. / 121 Leaves printed single pages, preliminary pages a-l and numbered pages 1-81. / ENGLISH ABSTRACT:In the midst of the current non-renewable energy crises specifically with regard to fossil fuel, various research institutions across the world have turned their focus to renewable and sustainable development. Using our available non.renewable resources as efficiently as possible has been a focal point the past decades and will certainly be as long as these resources exist Various means to utilize the world's abundant and freely available renewable energy has been studied and some even introduced and installed as sustainable energy sources, Electricity generation by means of wind powered turbines, photo-voltaic cells, and tidal and wave energy are but a few examples. Modern photo-voltaic cells are known to have a solar to electricity conversion efficiency of 12% (Van Heerden, 2003) while wind turbines have an approximate wind to electricity conversion efficiency of 50% (Twele et aI., 2002). This low solar to electricity conversion efficiency together with the fact that renewable energy research is a relatively modern development, lead to the investigation into methods capable of higher solar to electricity conversion efficiencies. One such method could be to use the relatively old technology of the Stirling cycle developed in the early 1800's (solar to electricity conversion efficiency in the range of 20.24 % according Van Heerden, 2003). The Stirling cycle provides a method for converting thermal energy to mechanical power which can be used to generate electricity, One of the main advantages of Stirling machines is that they are capable of using any form of heat source ranging from solar to biomass and waste heat. This document provides a discussion of some of the available methods for the analysis of Stirling machines. The six (6) different methods considered include: the method of Beale, West, mean-pressurepower- formula (MPPF), Schmidt, idea! adiabatic and the simple analysis methods. The first three (3) are known to be good back-of-the-envelope methods specifically for application as synthesis tools during initialisation of design procedures, while the latter three (3) are analysis tools finding application during Stirling engine design and analysis procedures. These analysis methods are based on the work done by Berchowitz and Urieli (1984) and form the centre of this document. Sections to follow provide a discussion of the mathematical model as well as the MATlAB implementation thereof. Experimental tests were conducted on the Heinrici engine to provide verification of the simulated resutls. Shortcomings of these analyses methods are also discussed in the sections to follow. Recommendations regarding improvements of the simulation program, possible fields of application for Stirling technology, as well as future fields of study are made in the final chapter of this document. A review of relevanl literature regarding modern applications of Stirling technology and listings of companies currently manufacturing and developing Stirling machines and findings of research done at various other institutions are provided. / AFRIKAANSE OPSOMMING:Die tempo van uitputling van die wereld se nie-hernubare energiebronne die afgelope jare het aanleiding gegee daartoe dal daar loenemend fokus toegespits word op die ontwikkeling van hernubare alternatiewe. Meer doeltreffende benutting van die wereld se nie-hernubare energie is reeds 'n fokus punt, vir navorsers reg oor die wereld, vir die afgelope dekades. Die aarde se oorvloedryke hernubare energie bronne word reeds met verskeie metodes ontgin. Die omskakeling van wind-, son- en gety energie na elektrisieteids is net 'n paar voorbeelde. Die effektiwiteid van sonkrag na elektrisietyds omskakeling van moderne fotovo!la'iese selle is in die orde van 12% (Van Heerden, 2003) terwyl die doeltreffendeid van wind energie na elektrisiteit omskakelling in die orde van 50% (Twele et at, 2002) is. Hierdie relatief lae omskelings doeltreffendeid van sonkrag na elektrisietyd, tesame met die feit dat die hernubare industrie nag relatief jonk is, lei lot die soeke na ander meer doellreffende moontlikhede Die Stirling siklus is nie 'n mod erne beginsel nie, maar die toepassing daarvan veral in die hernubare energie industrie is wei 'n relatiewe nuwe beg rip, veral in teme van die omskakeling van sonkrag na elektriese energie (gemiddelde sonkrag na lektriese energie omskakelings doellreffendeid in die orde van 20-24% is gevind deur Van Heerden, 2003). Die omskakeling van lermiese energie na meganiese energie is sekerlik die hoof uitkomsle van die Stirling siklus, alhoewel dit ook toepassing vind in die verkoefingsindustrie. Die feit dat die Stirling siklus van enige vorm van termiese energie (bv. son. biomassa, asook hilte geproduseer as byproduk tydens sekere prosesse) gebruik kan maak. is een van die redes wat die tegnologie 56 aanloklik maak, spesifiek !.o,v. die hernubare energie sektor. Ses (6) metodes vir die analise van die Stirling siklus word in hierdie dokument bespreek. Dit slui! die volgnde in: Beale-, West-, die gemiddelde-druk-krag-metode (GDKM), Schmidt-, adiabatiese- en die eenvoudige analise melodes. Die eerste drie (3) metodes is handige berekenings metodes Iydens die aanvangs en sinlesefase van Stirling enjin ontwerp, lerwyl die laaste drie (3) meer loegespils is op die volledige ontwerps- en analisefases gedurende die Stirling eniin ontwerps proses. Die drie (3) analise melodes is gebaseer op die werk wat deur Berchowitz en Urieli (1984) gedoen is en maak die kern van die dokument uit. Die wiskundige model, implimentering daarvan in MATlAB, sowel as die eksperimentele verifieering van die resultate word bespreek. Tekortkominge van die analise metodes word ook aangespreek in elke hoofsluk. Moontlikke verbeterings len opsigte van die verskeie aannames word in die finale hoofsluk van die dokumenl aangespreek. Verskeie voorgestelde riglings vir toekomslige navorsings projekle word ook in die finale hoofstuk van die dokument genoem. 'n Kort oorsig van die relevanle lileraluur in verband mel huidige loepassings van die Stirling legnologie, asook die name van maatskappye wal tans hierdie tegnologiee ontwikkel en vervaardig, word genoem.
16

Analysis and design of stirling engines for waste-heat recovery

Shoureshi, R. (Rahmatallah) January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Rahmatallah Shoureshi. / Ph.D.
17

A low temperature differential stirling engine for power generation : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Engineering in the University of Canterbury /

Lloyd, Caleb C. January 2009 (has links)
Thesis (M.E.)--University of Canterbury, 2009. / Typescript (photocopy). Includes bibliographical references (leaves 106-109). Also available via the World Wide Web.
18

Viability of stirling-based combined cycle distributed power generation

Liang, Hua. January 1998 (has links)
Thesis (M.S.)--Ohio University, November, 1998. / Title from PDF t.p.
19

Preliminary Analysis of an Innovative Rotary Displacer Stirling Engine

Bagheri, Amirhossein 12 1900 (has links)
Stirling engines are an external combustion heat engine that converts thermal energy into mechanical work that a closed cycle is run by cyclic compression and expansion of a work fluid (commonly air or Helium) in which, the working fluid interacts with a heat source and a heat sink and produces network. The engine is based on the Stirling cycle which is a subset of the Carnot cycle. The Stirling cycle has recently been receiving renewed interest due to some of its key inherent advantages. In particular, the ability to operate with any form of heat source (including external combustion, flue gases, alternative (biomass, solar, geothermal) energy) provides Stirling engines a great flexibility and potential benefits since it is convinced as engines running with external heat sources. However, several aspects of traditional Stirling engine configurations (namely, the Alpha, Beta, and Gamma), specifically complexity of design, high cost, and relatively low power to size and power to volume ratios, limited their widespread applications to date. This study focuses on an innovative Stirling engine configuration that features a rotary displacer (as opposed to common reciprocating displacers), and aims to utilize analytical and numerical analysis to gain insights on its operation parameters. The results are expected to provide useful design guidelines towards optimization. The present study starts with an overview of the Stirling cycle and Stirling engines including both traditional and innovative rotary displacer configurations, and their major advantages and disadvantages. The first approach considers an ideal analytical model and implements the well-known Schmidt analysis assumptions for the rotary displacer Stirling engine to define the effects of major design and operation parameters on the performance. The analytical model resulted in identifying major variables that could affect the engine performance (such as the dead volume spaces, temperature ratios and the leading phase angle). It was shown that the dead volume could have a drastic effect over the engine performance and the optimum phase angle of the engine is 90o. The second approach considers a non-ideal analytical model and aims to identify and account the main sources of energy losses in the cycle to better represent the engine performance. The study showed that the ideal efficiency and the non-ideal efficiency could have 15% difference that could have as an enormous effect on the engine performance.
20

Calculation of gas-wall heat transfer from pressure and volume data for spaces with inflow and outflow

Finkbeiner, David L. 04 December 2009 (has links)
Heat transfer in cylinder spaces is important to the performance of many reciprocating energy conversion machines, such as gas compressors and Stirling machines. Work over the past 10 years has shown that heat transfer driven by oscillating pressure differs from steady state heat transfer, in magnitude arid phase. In-cylinder heat transfer under this oscillating condition can be out of phase with the temperature difference. For studies with closed piston-cylinder gas springs, this heat transfer phase shift has been successfully predicted with the use of a complex Nusselt number. Since a complex,number has both a magnitude and a phase, a complex Nusselt number can describe the phase shift between temperature difference and heat transfer. Quasi - steady heat transfer models, such as Newton's Law of Cooling, do not predict this phase shift. In this project, the problem of in-cylinder heat transfer with inflow and outflow was studied. The goal was to determine what the complex heat transfer coefficients were under these conditions. Because methods which measure the heat transfer directly, such as heat flux gauges, only give local results, past work has used pressure and volume measurements to calculate surface averaged values for the heat transfer. This becomes much more difficult to do with inflow and outflow because of the difficulty in accurately determining how much mass is in the cylinder at any given time. Two approaches were used to overcome this problem. They are the main substance of the work presented here. The actual experimental pressure and volume measurements were taken by Kafka (Virginia Tech Master's Thesis, 1994). / Master of Science

Page generated in 0.0796 seconds