• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometric Scene Labeling for Long-Range Obstacle Detection

Hillgren, Patrik January 2015 (has links)
Autonomous Driving or self driving vehicles are concepts of vehicles knowing their environment and making driving manoeuvres without instructions from a driver. The concepts have been around for decades but has improved significantly in the last years since research in this area has made significant progress. Benefits of autonomous driving include the possibility to decrease the number of accidents in traffic and thereby saving lives. A major challenge in autonomous driving is to acquire 3D information and relations between all objects in surrounding traffic. This is referred to as \textit{spatial perception}. Stereo camera systems have become a central sensor module for advanced driver assistance systems and autonomous driving. For object detection and measurements at large distances stereo vision encounter difficulties. This includes objects being small, having low contrast and the presence of image noise. Having an accurate perception of the environment at large distances is however of high interest for many applications, especially autonomous driving. This thesis proposes a method which tries to increase the range to where generic objects are first detected using a given stereo camera setup. Objects are represented by planes in 3D space. The input image is segmented into the various objects and the 3D plane parameters are estimated jointly. The 3D plane parameters are estimated directly from the stereo image pairs. In particular, this thesis investigates methods to introduce geometric constraints to the segmentation or labeling task, i.e assigning each considered pixel in the image to a plane. The methods provided in this thesis show that despite the difficulties at large distances it is possible to exploit planar primitives in 3D space for obstacle detection at distances where other methods fail. / En autonom bil innebär att bilen har en uppfattning om sin omgivning och kan utifran det ta beslut angående hur bilen ska manövreras. Konceptet med självkörande bilar har existerat i årtionden men har utvecklats snabbt senaste åren sedan billigare datorkraft finns lättare tillgänglig. Fördelar med autonomiska bilar innebär bland annat att antalet olyckor i trafiken minskas och därmed liv räddas. En av de största utmaningarna med autonoma bilar är att få 3D information och relationer mellan objekt som finns i den omgivande trafikmiljön. Detta kallas för spatial perception och innebär att detektera alla objekt och tilldela en korrekt postition till dem. Stereo kamerasystem har fått en central roll för avancerade förarsystem och autonoma bilar. För detektion av objekt på stora avstånd träffar stereo system på svårigheter. Detta inkluderar väldigt små objekt, låg kontrast och närvaron av brus i bilden. Att ha en ackurativ perception på stora avstånd är dock vitalt för många applikationer, inte minst autonoma bilar. Den här rapporten föreslar en metod som försöker öka avståndet till där objekt först upptäcks. Objekt representeras av plan i 3D rymden. Bilder givna från stereo par segmenteras i olika object och plan parametrar estimeras samtidigt. Planens parametrar estimeras direkt från stereo bild paren. Den här rapporten utreder metoder att introducera gemoetriska begränsningar att använda vid segmenteringsuppgiften. Metoderna som presenteras i denna rapport visar att trots den höga närvaron av brus på stora avstånd är det möjligt att estimera geometriska objekt som är starka nog att möjliggöra detektion av objekt på ett avstand där andra metoder misslyckas.
2

Semantic Stixels fusing LIDAR for Scene Perception / Semantiska Stixlar med LIDAR för självkörande bilar

Forsberg, Olof January 2018 (has links)
Autonomous driving is the concept of a vehicle that operates in traffic without instructions from a driver. A major challenge for such a system is to provide a comprehensive, accurate and compact scene model based on information from sensors. For such a model to be comprehensive it must provide 3D position and semantics on relevant surroundings to enable a safe traffic behavior. Such a model creates a foundation for autonomous driving to make substantiated driving decisions. The model must be compact to enable efficient processing, allowing driving decisions to be made in real time. In this thesis rectangular objects (The Stixelworld) are used to represent the surroundings of a vehicle and provide a scene model. LIDAR and semantic segmentation are fused in the computation of these rectangles. This method indicates that a dense and compact scene model can be provided also from sparse LIDAR data by use of semantic segmentation. / Fullt självkörande fordon behöver inte förare. Ett sådant fordon behöver en precis, detaljerad och kompakt modell av omgivningen baserad på sensordata. Med detaljerad avses att modellen innefattar all information nödvändig för ett trafiksäkert beteende. Med kompakt avses att en snabb bearbetning kan göras av modellen så att fordonet i realtid kan fatta beslut och manövrera i trafiken. I denna uppsats tillämpas en metod där man med rektangulära objekt skapar en modell av omgivningen. Dessa beräknas från LIDAR och semantisk segmentering. Arbetet indikerar att med hjälp av semantisk segmentering kan en tät, detaljerad och kompakt modell göras även från glesa LIDAR-data.
3

The Stixel World

Pfeiffer, David 31 August 2012 (has links)
Die Stixel-Welt ist eine neuartige und vielseitig einsetzbare Zwischenrepräsentation zur effizienten Beschreibung dreidimensionaler Szenen. Heutige stereobasierte Sehsysteme ermöglichen die Bestimmung einer Tiefenmessung für nahezu jeden Bildpunkt in Echtzeit. Das erlaubt zum einen die Anwendung neuer leistungsfähiger Algorithmen, doch gleichzeitig steigt die zu verarbeitende Datenmenge und der dadurch notwendig werdende Aufwand massiv an. Gerade im Hinblick auf die limitierte Rechenleistung jener Systeme, wie sie in der videobasierten Fahrerassistenz zum Einsatz kommen, ist dies eine große Herausforderung. Um dieses Problem zu lösen, bietet die Stixel-Welt eine generische Abstraktion der Rohdaten des Sensors. Jeder Stixel repräsentiert individuell einen Teil eines Objektes im Raum und segmentiert so die Umgebung in Freiraum und Objekte. Die Arbeit stellt die notwendigen Verfahren vor, um die Stixel-Welt mittels dynamischer Programmierung in einem einzigen globalen Optimierungsschritt in Echtzeit zu extrahieren. Dieser Prozess wird durch eine Vielzahl unterschiedlicher Annahmen über unsere von Menschenhand geschaffene Umgebung gestützt. Darauf aufbauend wird ein Kalmanfilter-basiertes Verfahren zur präzisen Bewegungsschätzung anderer Objekte vorgestellt. Die Arbeit stellt umfangreiche Bewertungen der zu erwartenden Leistungsfähigkeit aller vorgestellten Verfahren an. Dafür kommen sowohl vergleichende Ansätze als auch diverse Referenzsensoren, wie beispielsweise LIDAR, RADAR oder hochpräzise Inertialmesssysteme, zur Anwendung. Die Stixel-Welt ist eine extrem kompakte Abstraktion der dreidimensionalen Umgebung und bietet gleichzeitig einfachsten Zugriff auf alle essentiellen Informationen der Szene. Infolge dieser Arbeit war es möglich, die Effizienz vieler auf der Stixel-Welt aufbauender Algorithmen deutlich zu verbessern. / The Stixel World is a novel and versatile medium-level representation to efficiently bridge the gap between pixel-based processing and high-level vision. Modern stereo matching schemes allow to obtain a depth measurement for almost every pixel of an image in real-time, thus allowing the application of new and powerful algorithms. However, it also results in a large amount of measurement data that has to be processed and evaluated. With respect to vision-based driver assistance, these algorithms are executed on highly integrated low-power processing units that leave no room for algorithms with an intense calculation effort. At the same time, the growing number of independently executed vision tasks asks for new concepts to manage the resulting system complexity. These challenges are tackled by introducing a pre-processing step to extract all required information in advance. Each Stixel approximates a part of an object along with its distance and height. The Stixel World is computed in a single unified optimization scheme. Strong use is made of physically motivated a priori knowledge about our man-made three-dimensional environment. Relying on dynamic programming guarantees to extract the globally optimal segmentation for the entire scenario. Kalman filtering techniques are used to precisely estimate the motion state of all tracked objects. Particular emphasis is put on a thorough performance evaluation. Different comparative strategies are followed which include LIDAR, RADAR, and IMU reference sensors, manually created ground truth data, and real-world tests. Altogether, the Stixel World is ideally suited to serve as the basic building block for today''s increasingly complex vision systems. It is an extremely compact abstraction of the actual world giving access to the most essential information about the current scenario. Thanks to this thesis, the efficiency of subsequently executed vision algorithms and applications has improved significantly.

Page generated in 0.0318 seconds