• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic Approach In Reserve Estimation

Ulker, Emine Buket 01 January 2004 (has links) (PDF)
Geostatistics and more specifically stochastic modeling of reservoir heterogeneities are being increasingly considered by reservoir analysts and engineers for their potential in generating more accurate reservoir models together with usable measures of spatial uncertainty. Geostatistics provides a probabilistic framework and a toolbox for data analysis with early integration of information. The uncertainty about the spatial distribution of critical reservoir parameters is modeled and transferred all the way to a risk conscious reservoir management. The stochastic imaging (modeling) algorithms allow the generation of multiple, equiprobable, unsmoothed reservoir models yet all honoring the data available. This thesis presents stochastic reserve estimation methods as related to the various stages of development of an oil field. Advances in technology are leading to better deterministic estimates as well as stochastic estimates with narrower ranges. Practices in the industry vary from complete dedication to deterministic or stochastic to a choice of the method depending on the stage of the development. In this study, reserves are calculated from the data available in Southeastern Turkey by using stochastic methods. Probability density functions, number of iterations are important statistical concepts. Increasing number of iterations leads to a normal distribution of histogram.
2

Modélisation numérique de l'impact des grands tremblements de terre sur la dynamique des rivières / Numerical modeling of the impact of major earthquakes on river dynamics

Croissant, Thomas 28 November 2016 (has links)
Dans les chaînes de montagnes, les séismes de magnitudes intermédiaires à fortes (Mw>6) déclenchent systématiquement un grand nombre de glissements de terrain responsables de l'introduction de volumes massifs de sédiments dans le réseau fluviatile. L'évacuation progressive de ces sédiments hors de la zone épicentrale affecte la dynamique des rivières et provoque des aléas hydro-sédimentaires dans les plaines alluviales (avulsion des rivières, crues...). La quantification des transferts sédimentaires est essentielle pour mieux comprendre l'évolution des paysages à court et moyen terme (de l'heure au siècle) et permettre une gestion efficace des risques dans les zones d'accumulation. Cependant, les flux de sédiments grossiers étant difficiles à mesurer, les facteurs contrôlant l'évacuation des glissements de terrain restent à ce jour mal compris. Cette thèse a donc porté sur l'étude, via la modélisation, des paramètres influençant la mobilisation des glissements de terrain, la préservation de la capacité de transport la transition entre gorge et plaine alluviale et la dynamique court terme des cônes alluviaux soumis à de forts apports sédimentaires. Les approches développées sont appliquées au contexte de la côte Ouest de la Nouvelle Zélande où la probabilité d'occurrence d'un séisme de magnitude 8 est de 50% dans les 50 ans à venir. Cette problématique à été abordée analytiquement et via une approche numérique avec le modèle 2D d'évolution des paysages et des rivières, Eros. Avec l'approche analytique, nous démontrons que la conservation de la capacité de transport long terme à la transition entre gorges et plaines alluviales est généralement réalisée par le passage à un système en tresse. Nous identifions aussi la variabilité des débits comme facteur dominant de la capacité de transport long terme comparé à l'effet de la végétation riparienne. Avec l'approche numérique, nous utilisons Eros qui est composé 1. d'un modèle hydrodynamique 2D, 2. d'un modèle de transport/dépôt de sédiments et 3. de modèles gérant les flux latéraux d'érosion et de dépôt. La combinaison de ces éléments permet l'émergence de diverses géométries de rivières alluviales (droites/sinueuses ou en tresses) en fonction des forçages externes qu'elles subissent (débit d'eau, flux sédimentaires). L'application d'Eros à des cas naturels a nécessité la validation et la calibration de ses paramètres principaux à l'aide: 1. de solutions analytiques et 2. de la reproduction morphodynamique de systèmes naturels, tel que l'évolution de la rivière Poerua en Nouvelle Zélande suite au glissement de terrain du Mont Adams. Dans la partie aval du bassin, les simulations numériques démontrent les capacités du modèle 1) à prédire efficacement l'évolution de plaines alluviales soumises à plusieurs scénario d'apports sédimentaires massifs et 2) à générer des cartes de risques probabilistes. Dans la partie amont du bassin, les résultats mettent en évidence le rôle clef de la réduction dynamique de largeur des rivières par rapport à la largeur de la gorge fluviatile, sur l'accélération de l'évacuation des sédiments issus des glissements de terrain. Une loi unique caractérisant les temps d'export d'une distribution de glissements de terrain peut être définie en fonction du rapport entre volume de sédiment et capacité de transport initiale de la rivière, permettant ainsi d'estimer leur temps de résidence moyen à 5-30 ans pour un scénario de séisme de Mw=8 beaucoup plus faibles que ceux estimés précédemment (~100 ans). L'approche numérique développée dans ce travail suggère que l'étude de la réponse des chaînes de montagnes à un forçage sismique fort ne peut être effectuée efficacement qu'avec un modèle 2D capable de prendre en compte les non-linéarités entre écoulements des rivières, leurs géométries et le transport sédimentaire. Les résultats obtenus permettent une meilleure caractérisation de la dynamique des paysages à l'échelle du cycle sismique et des aléas à court terme. / In mountainous areas, intermediate to large earthquakes (Mw > 6) systematically trigger a large number of landslides supplying the fluvial network with massive volumes of sediment. The progressive evacuation of the sediment out of the epicentral area alters river dynamics and may cause hydro-sedimentary hazards in alluvial plains (river avulsion, inundations, bank erosion, ...). The quantification of sediment transfers is critical to better understand landscape evolution on short timescales (i.e. hours to centuries) and improve hazard management in deposition areas. However, the factors controlling the coarse sediment transfers are still poorly known due to a lack of field measurements and adequate numerical models. The aim of this work is thus to study, via numerical modeling, the parameters influencing landslides evacuation, the transport capacity variations at the gorge/alluvial plain transition and the short-term dynamics and hazards of alluvial fans. This work is set up in the context of the West Coast of New Zealand (NZ) which presents a 50% probability to experience a magnitude 8 earthquake in the next 50 years. This problematic has been addressed analytically and via a numerical approach. Using the analytical approach, we demonstrate that the conservation of long-term transport capacity at the bedrock gorge and alluvial plain transition usually implies the channel narrowing in the alluvial part that is generally realized by a transition to a braided system. We identify discharge variability as the dominant factor of alluvial river long term transport capacity compared to riparian vegetation. To explore the role of channel self-organization on coarse sediment transport, we use Eros, a 2D morphodynamic model able to simulate landscape evolution improved by a new 2D hydrodynamic model. Combined with a sediment transport/deposition model and lateral fluxes modeling (bank erosion and transverse deposition), Eros allows for the emergence of diverse alluvial river regimes and geometries (e.g. straight/sinuous and braided channels) as a function of the external forcing experienced by the river (water and sediment fluxes). The application of Eros on natural cases has required the validation and calibration of its principal parameters using analytical solutions and the morphodynamic reproduction of natural systems such as the evolution of the Poerua river in New Zealand following the Mount Adams landslide. In the downstream part of the catchment, the ensemble numerical simulations demonstrate Eros abilities to 1) efficiently predict the morphodynamic evolution of alluvial fans submitted to different scenarios of large sediment supplies and 2) generate probabilistic risk maps. In the upstream part, the results highlight the dominant role of dynamic river narrowing reducing export times of landslide-derived sediments. We define a new law characterizing export times as a function of landslide volume and pre-landslide transport capacity that predicts mean residence times for a M8 earthquake in a mountain range of 5-30 yr, much lower than previous estimations of ~ 100 yr. The numerical approach developed in this work suggests that the study of mountain ranges response to severe landslide disruption can only be addressed with a 2D model able to account for the non-linearities between river flow, channel geometry and sediment transport. The results allow for a better characterization of landscape dynamics at the scale of a seismic cycle and hydro-sedimentary hazards in the short term.
3

Approche stochastique de l'analyse du « residual moveout » pour la quantification de l'incertitude dans l'imagerie sismique / A stochastic approach to uncertainty quantification in residual moveout analysis

Tamatoro, Johng-Ay 09 April 2014 (has links)
Le principale objectif de l'imagerie sismique pétrolière telle qu'elle est réalisée de nos jours est de fournir une image représentative des quelques premiers kilomètres du sous-sol. Cette image permettra la localisation des structures géologiques formant les réservoirs où sont piégées les ressources en hydrocarbures. Pour pouvoir caractériser ces réservoirs et permettre la production des hydrocarbures, le géophysicien utilise la migration-profondeur qui est un outil d'imagerie sismique qui sert à convertir des données-temps enregistrées lors des campagnes d'acquisition sismique en des images-profondeur qui seront exploitées par l'ingénieur-réservoir avec l'aide de l'interprète sismique et du géologue. Lors de la migration profondeur, les évènements sismiques (réflecteurs,…) sont replacés à leurs positions spatiales correctes. Une migration-profondeur pertinente requiert une évaluation précise modèle de vitesse. La précision du modèle de vitesse utilisé pour une migration est jugée au travers l'alignement horizontal des évènements présents sur les Common Image Gather (CIG). Les évènements non horizontaux (Residual Move Out) présents sur les CIG sont dus au ratio du modèle de vitesse de migration par la vitesse effective du milieu. L'analyse du Residual Move Out (RMO) a pour but d'évaluer ce ratio pour juger de la pertinence du modèle de vitesse et permettre sa mise à jour. Les CIG qui servent de données pour l'analyse du RMO sont solutions de problèmes inverses mal posés, et sont corrompues par du bruit. Une analyse de l'incertitude s'avère nécessaire pour améliorer l'évaluation des résultats obtenus. Le manque d'outils d'analyse de l'incertitude dans l'analyse du RMO en fait sa faiblesse. L'analyse et la quantification de l'incertitude pourrait aider à la prise de décisions qui auront des impacts socio-économiques importantes. Ce travail de thèse a pour but de contribuer à l'analyse et à la quantification de l'incertitude dans l'analyse des paramètres calculés pendant le traitement des données sismiques et particulièrement dans l'analyse du RMO. Pour atteindre ces objectifs plusieurs étapes ont été nécessaires. Elles sont entre autres :- L’appropriation des différents concepts géophysiques nécessaires à la compréhension du problème (organisation des données de sismique réflexion, outils mathématiques et méthodologiques utilisés);- Présentations des méthodes et outils pour l'analyse classique du RMO;- Interprétation statistique de l’analyse classique;- Proposition d’une approche stochastique;Cette approche stochastique consiste en un modèle statistique hiérarchique dont les paramètres sont :- la variance traduisant le niveau de bruit dans les données estimée par une méthode basée sur les ondelettes, - une fonction qui traduit la cohérence des amplitudes le long des évènements estimée par des méthodes de lissages de données,- le ratio qui est considéré comme une variable aléatoire et non comme un paramètre fixe inconnue comme c'est le cas dans l'approche classique de l'analyse du RMO. Il est estimé par des méthodes de simulations de Monte Carlo par Chaîne de Markov.L'approche proposée dans cette thèse permet d'obtenir autant de cartes de valeurs du paramètre qu'on le désire par le biais des quantiles. La méthodologie proposée est validée par l'application à des données synthétiques et à des données réelles. Une étude de sensibilité de l'estimation du paramètre a été réalisée. L'utilisation de l'incertitude de ce paramètre pour quantifier l'incertitude des positions spatiales des réflecteurs est présentée dans ce travail de thèse. / The main goal of the seismic imaging for oil exploration and production as it is done nowadays is to provide an image of the first kilometers of the subsurface to allow the localization and an accurate estimation of hydrocarbon resources. The reservoirs where these hydrocarbons are trapped are structures which have a more or less complex geology. To characterize these reservoirs and allow the production of hydrocarbons, the geophysicist uses the depth migration which is a seismic imaging tool which serves to convert time data recorded during seismic surveys into depth images which will be exploited by the reservoir engineer with the help of the seismic interpreter and the geologist. During the depth migration, seismic events (reflectors, diffractions, faults …) are moved to their correct locations in space. Relevant depth migration requires an accurate knowledge of vertical and horizontal seismic velocity variations (velocity model). Usually the so-called Common-Image-Gathers (CIGs) serve as a tool to verify correctness of the velocity model. Often the CIGs are computed in the surface offset (distance between shot point and receiver) domain and their flatness serve as criteria of the velocity model correctness. Residual moveout (RMO) of the events on CIGs due to the ratio of migration velocity model and effective velocity model indicates incorrectness of the velocity model and is used for the velocity model updating. The post-stacked images forming the CIGs which are used as data for the RMO analysis are the results of an inverse problem and are corrupt by noises. An uncertainty analysis is necessary to improve evaluation of the results. Dealing with the uncertainty is a major issue, which supposes to help in decisions that have important social and commercial implications. The goal of this thesis is to contribute to the uncertainty analysis and its quantification in the analysis of various parameters computed during the seismic processing and particularly in RMO analysis. To reach these goals several stages were necessary. We began by appropriating the various geophysical concepts necessary for the understanding of:- the organization of the seismic data ;- the various processing ;- the various mathematical and methodological tools which are used (chapters 2 and 3). In the chapter 4, we present different tools used for the conventional RMO analysis. In the fifth one, we give a statistical interpretation of the conventional RMO analysis and we propose a stochastic approach of this analysis. This approach consists in hierarchical statistical model where the parameters are: - the variance which express the noise level in the data ;- a functional parameter which express coherency of the amplitudes along events ; - the ratio which is assume to be a random variable and not an unknown fixed parameter as it is the case in conventional approach. The adjustment of data to the model done by using smoothing methods of data, combined with the using of the wavelets for the estimation of allow to compute the posterior distribution of given the data by the empirical Bayes methods. An estimation of the parameter is obtained by using Markov Chain Monte Carlo simulations of its posterior distribution. The various quantiles of these simulations provide different estimations of . The proposed methodology is validated in the sixth chapter by its application on synthetic data and real data. A sensitivity analysis of the estimation of the parameter was done. The using of the uncertainty of this parameter to quantify the uncertainty of the spatial positions of reflectors is presented in this thesis.
4

Analýza neutronového pole laboratorního AmBe zdroje s využitím měřícího stendu / The AmBe Laboratory Neutron Source Field Determination Using Experimental Stend

Jelínek, Martin January 2017 (has links)
This master’s thesis provides a comprehensive overview of the conventional neutron sources from the perspective of reactions which lead to the production of neutrons, advantages, disadvantages, properties and their possible utilization. In the relation to the assembly of the laboratory neutron source and the unique experimental stand “Candle” basic methods of the neutron field analysis are outlined and two of them, the neutron activation analysis and the calculation using the MCNP software code are discussed in depth to apply and compare these methods. The experimental part deals with the realization of neutron activation analysis from its design itself, through gamma spectrometry to the cadmium ratio calculation. In compliance with the measurements, a calculation with MCNP code was run and both methods were evaluated and compared. The computation is complemented with the analysis of radiation situation on the borders of the supervised area, which is compared to the legal limit.

Page generated in 0.0777 seconds