• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flots stochastiques sur les graphes / Stochastic flows on graphs

Hajri, Hatem 28 November 2011 (has links)
Dans cette thèse nous étudions des équations différentielles stochastiques sur quelques graphes simples dont les solutions sont des flots de noyaux au sens de Le Jan et Raimond. Dans une première partie, nous définissons une extension de l'équation de Tanaka sur un nombre fini de demi-droites orientées et issues de l'origine. Utilisant certaines propriétés de régularité du flot associé au mouvement brownien biaisé, nous donnons une description complète de toutes les solutions. S'appuyant sur une transformation discrète introduite par Csaki et Vincze, nous donnons dans un cas d'orientation particulière (qui couvre déjà l'équation de Tanaka usuelle) une approche discrète à quelques solutions. La dernière partie de ce travail est effectuée avec O. Raimond. Par une méthode de couplage des flots, nous classifions les solutions de l'équation de Tanaka sur le cercle. Nous établissons aussi que ces flots sont coalescents. / In this thesis we study stochastic differential equations on some simple graphs whose solutions are stochastic flows of kernels in the sense of Le Jan and Raimond. In the first part, we define an extension of Tanaka's equation on a finite number of oriented half-lines issuing from the origin. Using some regularity properties of the skew Brownian motion flow, we give a complete description of all the solutions. Based on a discrete transformation introduced by Csaki and Vincze, we give for a particular orientation (which already covers the usual Tanaka's equation) a discrete approach to some solutions. The last part of this work is carried out with O. Raimond. By a method of coupling flows, we classify the solutions of Tanaka's equation on the circle. We also establish that all these flows are coalescing.
2

On parabolic stochastic integro-differential equations : existence, regularity and numerics

Leahy, James-Michael January 2015 (has links)
In this thesis, we study the existence, uniqueness, and regularity of systems of degenerate linear stochastic integro-differential equations (SIDEs) of parabolic type with adapted coefficients in the whole space. We also investigate explicit and implicit finite difference schemes for SIDEs with non-degenerate diffusion. The class of equations we consider arise in non-linear filtering of semimartingales with jumps. In Chapter 2, we derive moment estimates and a strong limit theorem for space inverses of stochastic flows generated by Lévy driven stochastic differential equations (SDEs) with adapted coefficients in weighted Hölder norms using the Sobolev embedding theorem and the change of variable formula. As an application of some basic properties of flows of Weiner driven SDEs, we prove the existence and uniqueness of classical solutions of linear parabolic second order stochastic partial differential equations (SPDEs) by partitioning the time interval and passing to the limit. The methods we use allow us to improve on previously known results in the continuous case and to derive new ones in the jump case. Chapter 3 is dedicated to the proof of existence and uniqueness of classical solutions of degenerate SIDEs using the method of stochastic characteristics. More precisely, we use Feynman-Kac transformations, conditioning, and the interlacing of space inverses of stochastic flows generated by SDEs with jumps to construct solutions. In Chapter 4, we prove the existence and uniqueness of solutions of degenerate linear stochastic evolution equations driven by jump processes in a Hilbert scale using the variational framework of stochastic evolution equations and the method of vanishing viscosity. As an application, we establish the existence and uniqueness of solutions of degenerate linear stochastic integro-differential equations in the L2-Sobolev scale. Finite difference schemes for non-degenerate SIDEs are considered in Chapter 5. Specifically, we study the rate of convergence of an explicit and an implicit-explicit finite difference scheme for linear SIDEs and show that the rate is of order one in space and order one-half in time.

Page generated in 0.0565 seconds