• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Are Particle-Based Methods the Future of Sampling in Joint Energy Models? A Deep Dive into SVGD and SGLD

Shah, Vedant Rajiv 19 August 2024 (has links)
This thesis investigates the integration of Stein Variational Gradient Descent (SVGD) with Joint Energy Models (JEMs), comparing its performance to Stochastic Gradient Langevin Dynamics (SGLD). We incorporated a generative loss term with an entropy component to enhance diversity and a smoothing factor to mitigate numerical instability issues commonly associated with the energy function in energy-based models. Experiments on the CIFAR-10 dataset demonstrate that SGLD, particularly with Sharpness-Aware Minimization (SAM), outperforms SVGD in classification accuracy. However, SVGD without SAM, despite its lower classification accuracy, exhibits lower calibration error underscoring its potential for developing well-calibrated classifiers required in safety-critical applications. Our results emphasize the importance of adaptive tuning of the SVGD smoothing factor ($alpha$) to balance generative and classification objectives. This thesis highlights the trade-offs between computational cost and performance, with SVGD demanding significant resources. Our findings stress the need for adaptive scaling and robust optimization techniques to enhance the stability and efficacy of JEMs. This thesis lays the groundwork for exploring more efficient and robust sampling techniques within the JEM framework, offering insights into the integration of SVGD with JEMs. / Master of Science / This thesis explores advanced techniques for improving machine learning models with a focus on developing well-calibrated and robust classifiers. We concentrated on two methods, Stein Variational Gradient Descent (SVGD) and Stochastic Gradient Langevin Dynamics (SGLD), to evaluate their effectiveness in enhancing classification accuracy and reliability. Our research introduced a new mathematical approach to improve the stability and performance of Joint Energy Models (JEMs). By leveraging the generative capabilities of SVGD, the model is guided to learn better data representations, which are crucial for robust classification. Using the CIFAR-10 image dataset, we confirmed prior research indicating that SGLD, particularly when combined with an optimization method called Sharpness-Aware Minimization (SAM), delivered the best results in terms of accuracy and stability. Notably, SVGD without SAM, despite yielding slightly lower classification accuracy, exhibited significantly lower calibration error, making it particularly valuable for safety-critical applications. However, SVGD required careful tuning of hyperparameters and substantial computational resources. This study lays the groundwork for future efforts to enhance the efficiency and reliability of these advanced sampling techniques, with the overarching goal of improving classifier calibration and robustness with JEMs.
2

A Study of the Loss Landscape and Metastability in Graph Convolutional Neural Networks / En studie av lösningslandskapet och metastabilitet i grafiska faltningsnätverk

Larsson, Sofia January 2020 (has links)
Many novel graph neural network models have reported an impressive performance on benchmark dataset, but the theory behind these networks is still being developed. In this thesis, we study the trajectory of Gradient descent (GD) and Stochastic gradient descent (SGD) in the loss landscape of Graph neural networks by replicating Xing et al. [1] study for feed-forward networks. Furthermore, we empirically examine if the training process could be accelerated by an optimization algorithm inspired from Stochastic gradient Langevin dynamics and what effect the topology of the graph has on the convergence of GD by perturbing its structure. We find that the loss landscape is relatively flat and that SGD does not encounter any significant obstacles during its propagation. The noise-induced gradient appears to aid SGD in finding a stationary point with desirable generalisation capabilities when the learning rate is poorly optimized. Additionally, we observe that the topological structure of the graph plays a part in the convergence of GD but further research is required to understand how. / Många nya grafneurala nätverk har visat imponerande resultat på existerande dataset, dock är teorin bakom dessa nätverk fortfarande under utveckling. I denna uppsats studerar vi banor av gradientmetoden (GD) och den stokastiska gradientmetoden (SGD) i lösningslandskapet till grafiska faltningsnätverk genom att replikera studien av feed-forward nätverk av Xing et al. [1]. Dessutom undersöker vi empiriskt om träningsprocessen kan accelereras genom en optimeringsalgoritm inspirerad av Stokastisk gradient Langevin dynamik, samt om grafens topologi har en inverkan på konvergensen av GD genom att ändra strukturen. Vi ser att lösningslandskapet är relativt plant och att bruset inducerat i gradienten verkar hjälpa SGD att finna stabila stationära punkter med önskvärda generaliseringsegenskaper när inlärningsparametern har blivit olämpligt optimerad. Dessutom observerar vi att den topologiska grafstrukturen påverkar konvergensen av GD, men det behövs mer forskning för att förstå hur.
3

Non-convex Bayesian Learning via Stochastic Gradient Markov Chain Monte Carlo

Wei Deng (11804435) 18 December 2021 (has links)
<div>The rise of artificial intelligence (AI) hinges on the efficient training of modern deep neural networks (DNNs) for non-convex optimization and uncertainty quantification, which boils down to a non-convex Bayesian learning problem. A standard tool to handle the problem is Langevin Monte Carlo, which proposes to approximate the posterior distribution with theoretical guarantees. However, non-convex Bayesian learning in real big data applications can be arbitrarily slow and often fails to capture the uncertainty or informative modes given a limited time. As a result, advanced techniques are still required.</div><div><br></div><div>In this thesis, we start with the replica exchange Langevin Monte Carlo (also known as parallel tempering), which is a Markov jump process that proposes appropriate swaps between exploration and exploitation to achieve accelerations. However, the na\"ive extension of swaps to big data problems leads to a large bias, and the bias-corrected swaps are required. Such a mechanism leads to few effective swaps and insignificant accelerations. To alleviate this issue, we first propose a control variates method to reduce the variance of noisy energy estimators and show a potential to accelerate the exponential convergence. We also present the population-chain replica exchange and propose a generalized deterministic even-odd scheme to track the non-reversibility and obtain an optimal round trip rate. Further approximations are conducted based on stochastic gradient descents, which yield a user-friendly nature for large-scale uncertainty approximation tasks without much tuning costs. </div><div><br></div><div>In the second part of the thesis, we study scalable dynamic importance sampling algorithms based on stochastic approximation. Traditional dynamic importance sampling algorithms have achieved successes in bioinformatics and statistical physics, however, the lack of scalability has greatly limited their extensions to big data applications. To handle this scalability issue, we resolve the vanishing gradient problem and propose two dynamic importance sampling algorithms based on stochastic gradient Langevin dynamics. Theoretically, we establish the stability condition for the underlying ordinary differential equation (ODE) system and guarantee the asymptotic convergence of the latent variable to the desired fixed point. Interestingly, such a result still holds given non-convex energy landscapes. In addition, we also propose a pleasingly parallel version of such algorithms with interacting latent variables. We show that the interacting algorithm can be theoretically more efficient than the single-chain alternative with an equivalent computational budget.</div>

Page generated in 0.1066 seconds