• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Random polynomials

Hannigan, Patrick January 1998 (has links)
No description available.
2

Pricing exotic options using improved strong convergence

Schmitz Abe, Klaus E. January 2008 (has links)
Today, better numerical approximations are required for multi-dimensional SDEs to improve on the poor performance of the standard Monte Carlo integration. With this aim in mind, the material in the thesis is divided into two main categories, stochastic calculus and mathematical finance. In the former, we introduce a new scheme or discrete time approximation based on an idea of Paul Malliavin where, for some conditions, a better strong convergence order is obtained than the standard Milstein scheme without the expensive simulation of the Lévy Area. We demonstrate when the conditions of the 2−Dimensional problem permit this and give an exact solution for the orthogonal transformation (θ Scheme or Orthogonal Milstein Scheme). Our applications are focused on continuous time diffusion models for the volatility and variance with their discrete time approximations (ARV). Two theorems that measure with confidence the order of strong and weak convergence of schemes without an exact solution or expectation of the system are formally proved and tested with numerical examples. In addition, some methods for simulating the double integrals or Lévy Area in the Milstein approximation are introduced. For mathematical finance, we review evidence of non-constant volatility and consider the implications for option pricing using stochastic volatility models. A general stochastic volatility model that represents most of the stochastic volatility models that are outlined in the literature is proposed. This was necessary in order to both study and understand the option price properties. The analytic closed-form solution for a European/Digital option for both the Square Root Model and the 3/2 Model are given. We present the Multilevel Monte Carlo path simulation method which is a powerful tool for pricing exotic options. An improved/updated version of the ML-MC algorithm using multi-schemes and a non-zero starting level is introduced. To link the contents of the thesis, we present a wide variety of pricing exotic option examples where considerable computational savings are demonstrated using the new θ Scheme and the improved Multischeme Multilevel Monte Carlo method (MSL-MC). The computational cost to achieve an accuracy of O(e) is reduced from O(e−3) to O(e−2) for some applications.
3

Selection in a spatially structured population

Straulino, Daniel January 2014 (has links)
This thesis focus on the effect that selection has on the ancestry of a spatially structured population. In the absence of selection, the ancestry of a sample from the population behaves as a system of random walks that coalesce upon meeting. Backwards in time, each ancestral lineage jumps, at the time of its birth, to the location of its parent, and whenever two ancestral lineages have the same parent they jump to the same location and coalesce. Introducing selective forces to the evolution of a population translates into branching when we follow ancestral lineages, a by-product of biased sampling forwards in time. We study populations that evolve according to the Spatial Lambda-Fleming-Viot process with selection. In order to assess whether the picture under selection differs from the neutral case we must consider the timescale dictated by the neutral mutation rate Theta. Thus we look at the rescaled dual process with n=1/Theta. Our goal is to find a non-trivial rescaling limit for the system of branching and coalescing random walks that describe the ancestral process of a population. We show that the strength of selection (relative to the mutation rate) required to do so depends on the dimension; in one and two dimensions selection needs to be stronger in order to leave a detectable trace in the population. The main results in this thesis can be summarised as follows. In dimensions three and higher we take the selection coefficient to be proportional to 1/n, in dimension two we take it to be proportional to log(n)/n and finally, in dimension one we take the selection coefficient to be proportional to 1/sqrt(n). We then proceed to prove that in two and higher dimensions the ancestral process of a sample of the population converges to branching Brownian motion. In one dimension, provided we do not allow ancestral lineages to jump over each other, the ancestral process converges to a subset of the Brownian net. We also provide numerical results that show that the non-crossing restriction in one dimension cannot be lifted without a qualitative change in the behaviour of the process. Finally, through simulations, we study the rate of convergence in the two-dimensional case.

Page generated in 0.1399 seconds