• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Closed-loop optimization of extracellular electrical stimulation for targeted neuronal activation

Kuykendal, Michelle Lea 27 August 2014 (has links)
We have developed a high-throughput system of closed-loop electrical stimulation and optical recording that facilitates the rapid characterization of extracellular stimulus-evoked neural activity. The ability to selectively stimulate a neuron is a defining characteristic of next-generation neural prostheses. Greater stimulus control and differential activation of specific neuronal populations allows for prostheses that better mimic their biological counterparts. In our system, we deliver square current pulses using a microelectrode array; automated real-time image processing of high-speed digital video identifies the neuronal response; and a feedback controller alters the applied stimulus to achieve a targeted response. The system controller performs directed searches within the strength-duration (SD) stimulus parameter space to build probabilistic neuronal activation curves. An important feature of this closed-loop system is a reduction in the number of stimuli needed to derive the activation curves when compared to the more commonly used open-loop system: this allows the closed-loop system to spend more time probing stimulus regions of interest in the multi-parameter waveform space, facilitating high resolution analysis. The stimulus-evoked activation data were well-fit to a sigmoid model in both the stimulus strength (current) and duration (pulse width) slices through the waveform space. The 2-D analysis produced a set of probability isoclines corresponding to each neuron-electrode pairing, which were fit to the SD threshold model described by Lapique (1907). We show that stimulus selectivity within a given neuron pair is possible in the one-parameter search space by using multiple stimulation electrodes. Additionally, by applying simultaneous stimuli to adjacent electrodes, the interaction between stimuli alters the neuronal activation threshold. The interaction between simultaneous multi-electrode multi-parameter stimulus waveforms creates an opportunity for increased stimulus selectivity within a population. We demonstrated that closed-loop imaging and micro-stimulation technology enable the study of neuronal excitation across a large parameter space, which is requisite for controlling neuronal activation in next generation clinical solutions.
2

A multi-configuration approach to reliability based structural integrity assessment for ultimate strength

Kolios, Athanasios 11 1900 (has links)
Structural Reliability treats uncertainties in structural design systematically, evaluating the levels of safety and serviceability of structures. During the past decades, it has been established as a valuable design tool for the description of the performance of structures, and lately stands as a basis in the background of the most of the modern design standards, aiming to achieve a uniform behaviour within a class of structures. Several methods have been proposed for the estimation of structural reliability, both deterministic (FORM and SORM) and stochastic (Monte Carlo Simulation etc) in nature. Offshore structures should resist complicated and, in most cases, combined environmental phenomena of greatly uncertain magnitude (eg. wind, wave, current, operational loads etc). Failure mechanisms of structural systems and components are expressed through limit state functions, which distinguish a failure and a safe region of operation. For a jacket offshore structure, which comprises of multiple tubular members interconnected in a three dimensional truss configuration, the limit state function should link the actual load or load combination acting on it locally, to the response of each structural member. Cont/d.
3

A multi-configuration approach to reliability based structural integrity assessment for ultimate strength

Kolios, Athanasios Ioannis January 2010 (has links)
Structural Reliability treats uncertainties in structural design systematically, evaluating the levels of safety and serviceability of structures. During the past decades, it has been established as a valuable design tool for the description of the performance of structures, and lately stands as a basis in the background of the most of the modern design standards, aiming to achieve a uniform behaviour within a class of structures. Several methods have been proposed for the estimation of structural reliability, both deterministic (FORM and SORM) and stochastic (Monte Carlo Simulation etc) in nature. Offshore structures should resist complicated and, in most cases, combined environmental phenomena of greatly uncertain magnitude (eg. wind, wave, current, operational loads etc). Failure mechanisms of structural systems and components are expressed through limit state functions, which distinguish a failure and a safe region of operation. For a jacket offshore structure, which comprises of multiple tubular members interconnected in a three dimensional truss configuration, the limit state function should link the actual load or load combination acting on it locally, to the response of each structural member. Cont/d.
4

Methods on Probabilistic Structural Vibration using Stochastic Finite Element Framework

Sarkar, Soumyadipta January 2016 (has links) (PDF)
Analysis of vibration of systems with uncertainty in material properties under the influence of a random forcing function is an active area of research. Especially the characterization based on mode shapes and frequencies of linear vibrating systems leads to much discussed random eigenvalue problem, which repeatedly appears while analyzing a number of engineering systems. Such analyses with conventional schemes for significant variation of system parameters for large systems are often not viable because of the high computational costs involved. Appropriate tools to reduce the size of stochastic vibrating systems and efficient response calculation are yet to mature. Among the mathematical tools used in this case, polynomial chaos formulation of uncertainties shows promise. But this comes with the implementation issue of solving large systems of nonlinear equations arising from Bubnov-Galerking projection in the formulation. This dissertation reports the study of such dynamic systems with uncertainties characterized by the probability distribution of eigen solutions under a stochastic finite element framework. In the context of structural vibration, the determination of appropriate modes to be considered in a stochastic framework is not straightforward. In this dissertation, at first the choice of dominant modes in stochastic framework is studied for vibration problems. A relative measure, based on the average energy contribution of each mode to the system, is developed. Further the interdependence of modes and the effect of the shape of the load on the choice of dominant modes are studied. Using these considerations, a hybrid algorithm is developed based on polynomial chaos framework for the response analysis of a structure with random mass and sickness and under the influence of random force. This is done by using modal truncation for response analysis with in a Monte Carlo loop. The algorithm is observed to be more efficient and achieves a high degree of accuracy compared to conventional techniques. Considering the fact that the Monte Carlo loops within the above mentioned hybrid algorithm is easily parallelizable, the efficient implementation of it depends on the SFE solution. The set of nonlinear equations arising from polynomial chaos formulation is solved using matrix-free Newton’s iteration using GMRES as linear solver. Solution of a large system using a iterative method like GMRES necessitates the use of a good preconditioner. Keeping focus on the par-allelizability of the algorithm, a number of efficient but cheap-to-construct preconditioners are developed and the most effective among them is chosen. The solution process is parallelized for large systems. The scalability of solution process in conjunction with the preconditioner is studied in details.

Page generated in 0.0823 seconds