• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 515
  • 262
  • 252
  • 76
  • 49
  • 31
  • 17
  • 16
  • 10
  • 10
  • 5
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 1391
  • 1050
  • 508
  • 284
  • 214
  • 199
  • 190
  • 188
  • 174
  • 167
  • 144
  • 141
  • 129
  • 110
  • 105
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of the multigrid method

Shah, Tasneem Mohammad January 1989 (has links)
No description available.
12

A spectral Lagrange-Galerkin method for periodic/non-periodic convection-dominated diffusion problems

Baker, M. D. January 1994 (has links)
No description available.
13

Investigation of Stokes' second problem for non-Newtonian fluids

Rikhotso, Deals Shaun 12 June 2014 (has links)
The motion of an incompressible fluid caused by the oscillation of a plane at plate of in nite length is termed Stokes' second problem. We assume zero velocity normal to the plate and thus simpli ed Navier-Stokes equations. For the unsteady Stokes' second problem, solutions may be obtained by using Laplace transforms, perturbation techniques, homotopy, di erential transform method or Adomian decomposition method. Stokes' second problem is discussed for second-grade and Oldroyd-B non-Newtonian fluids. This dissertation summarizes previously published work.
14

On the dynamics of Navier-stokes equations.

January 2008 (has links)
Duan, Qin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (p. 45-51). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.ii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Preliminaries --- p.9 / Chapter 3 --- Problem and main theorem --- p.15 / Chapter 3.1 --- Formulation of the problem --- p.15 / Chapter 3.2 --- Definition of weak solution and main theorem --- p.17 / Chapter 4 --- Existence and uniqueness of weak solution --- p.19 / Chapter 4.1 --- Some a priori estimates --- p.19 / Chapter 4.2 --- Uniqueness of weak solution --- p.35 / Chapter 5 --- Asymptotic behavior --- p.38 / Chapter 5.1 --- Large time behavior of total kinetic energy --- p.38 / Chapter 5.2 --- "Large time behavior of density p(x, t)" --- p.40 / Bibliography --- p.45
15

Some topics on compressible Navier-Stokes equations. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Duan, Qin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 141-150). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
16

Contribution à la résolution des équations de Navier Stokes par une méthode de réanalyse

Rabearivelo, Patrice Maminirina Durastanti, Jean-Félix January 2007 (has links)
Thèse de doctorat : Énergétique : Paris 12 : 2005. / Version électronique uniquement consultable au sein de l'Université Paris 12 (Intranet). Titre provenant de l'écran-titre. Bibliogr. : 37 réf.
17

On block preconditioners for the incompressible Navier-Stokes equations

Yung, Hoi Yan, Ada., 翁凱欣. January 2010 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
18

Finite element solvers and preconditioners for non-rotational and rotational Navier-Stokes equations

Tang, Sin-ting, 鄧倩婷 January 2013 (has links)
Navier-Stokes equations (NSE), the governing equations of incompressible ows, and rotational Navier-Stokes equations (RNSE), which model incompressible rotating ows, are of great importance in many industrial applications. In this thesis, several selected preconditioners for solving NSE are compared and analyzed. These preconditioners are then modified for applying to RNSE. Understanding the physics behind NSE and RNSE is essential when studying these two equations. The derivation of NSE from the law of conservation of mass and law of conservation of momentum is described. RNSE is obtained by changing the frame of reference of NSE to a rotational frame. The rotating effect leads to the extra Coriolis force term in RNSE. The equations are then scaled to dimensionless form to eliminate the effect of physical units. In practice, numerical solution of NSE instead of analytic solution is considered. To apply numerical solvers in this thesis, NSE is discretized by backward differentiation formula in time and finite element method in space. The non-linear term is linearized by extrapolation. The existence and uniqueness of the finite element solutions to NSE are shown in this thesis. Discretization and linearization result in a system of linear equations which is of saddle point type. Generalized minimum residual method (GMRES) is applied to solve the saddle point system so as to improve efficiency. GMRES is combined with preconditioning technique to enhance the convergence. In this thesis, three preconditioners, pressure convection-diffusion (PCD) [18], least squares commutator (LSC) [11] and relaxed dimensional factorization preconditioner (RDF) [4], for non-rotational problems are considered and investigated. The performance of preconditioners is compared in terms of time step dependency, mesh size dependency and Reynolds number (Re) dependency. It is found that PCD shows time step and mesh size independence for small Reynolds number (Re = 500). RDF is the most stable preconditioner among three preconditioners, but it costs slow convergence, which contrasts to the results in [4]. Preconditioners PCD, LSC and RDF are modi_ed to deal with the Coriolis force term in RNSE. Discrete projection method (DPM) [24], an algorithm designed for RNSE, is also considered. This algorithm can also be viewed as a preconditioned iterative method. The time step and Ekman number (Ek) dependency of modi_ed preconditioners and DPM are compared. The numerical results indicates that LSC is the best preconditioner against time step and Ek. DPM is only the second best although it is designed for RNSE. PCD is the worst preconditioner as it shows high Ek dependency. / published_or_final_version / Mathematics / Master / Master of Philosophy
19

Θεωρία διαφορικών αναπαραστάσεων στη ροή Stokes

Βαφέας, Παναγιώτης 22 June 2007 (has links)
Τα μοντέλα σωματιδίων σε κύτταρο για ροή Stokes διαμέσου σχετικά ομογενών σμηνών σωματιδίων είναι ουσιαστικά πρακτικού ενδιαφέροντος, διότι προσφέρουν ένα σχετικά απλό, αλλά αξιόπιστο σχέδιο για την αναλυτική ή ημιαναλυτική επίλυση προβλημάτων μεταφοράς μάζας και θερμότητας. Τα περισσότερα από τα αναλυτικά μοντέλα σε αυτή την περιοχή θεωρούν είτε σφαιρικά είτε, σε πρόσφατες εκδόσεις, μη σφαιρικά αλλά αξονοσυμμετρικά σχήματα. Παρά το γεγονός ότι πολλές πρακτικές εφαρμογές εμπλέκουν σωματίδια με αξονική συμμετρία, η γενική θεώρηση αναφέρεται σε συμπαγή σωματίδια αυθαίρετου σχήματος. Η παρούσα δουλειά ασχολείται με ενδιαφέρουσες απόψεις της θεωρητικής ανάλυσης έρπουσας ροής σε τρισδιάστατα και διδιάστατα σφαιρικά, σφαιροειδή και ελλειψοειδή χωρία. Θεωρούμε τέσσερις διαφορετικές πλήρεις αναπαραστάσεις των λύσεων για ροές που ακολουθούν τους κανόνες του Stokes. Η πρώτη είναι η αναπαράσταση Stokes, η οποία εξασφαλίζεται, αν εκφράσουμε την εξίσωση κινήσεως σε 2–D σφαιρικές ή σφαιροειδείς συντεταγμένες, σύμφωνα με την οποία η συνάρτηση ροής αναπτύσσεται σε όρους χωριζόμενων ή ημιδιαχωριζομένων ιδιομορφών, αντίστοιχα. Οι άλλες τρεις, όπου ισχύουν επίσης σε μη αξονοσυμμετρικές γεωμετρίες, είναι οι διαφορικές αναπαραστάσεις Papkovich – Neuber, Boussinesq – Galerkin και Palaniappan et al., όπου η ταχύτητα και η ολική πίεση εκφράζονται σε όρους αρμονικών και διαρμονικών ιδιοσυναρτήσεων. Αυτές οι πλήρεις διαφορικές λύσεις αφορούν και 2– D προβλήματα ροής. Τύποι σύνδεσης λαμβάνονται για τις περιπτώσεις αξονοσυμμετρικών και τρισδιάστατων ροών, οι οποίοι σχετίζουν τα αρμονικά δυναμικά και το δυναμικό συνάρτησης ροής. Η συσχέτιση είναι αποτέλεσμα της εξίσωσης των πεδίων ροής και καθορίζει τις ακριβείς σχέσεις σύνδεσης μεταξύ των αντιστοίχων σταθερών συντελεστών των δυναμικών. Η αντιστροφή της διαδικασίας εξαρτάται από τη γεωμετρία και την πολυπλοκότητα των διαφορικών λύσεων. Η αναπαράσταση των Papkovich – Neuber μας προσφέρει συγκεκριμένα σημαντικά πλεονεκτήματα και αποτελεί έναν πλήρη τρόπο για να λύσουμε 2–D και περισσότερο 3–D κυτταρικά μοντέλα, όπου είτε στάσιμα σωματίδια αιωρούνται σε ομοιόμορφα κινούμενο ρευστό (μοντέλο Kuwabara), είτε σωματίδια κινούνται με μια σταθερή ομοιόμορφη ταχύτητα και / ή περιστρέφονται με μια σταθερή γωνιακή ταχύτητα σε ένα ακίνητο ρευστό (μοντέλο Happel, μηχανικά ενεργειακά αυτόνομο). Η ευελιξία της αναπαράστασης, που κληρονομείται από τους βαθμούς ελευθερίας που προσφέρει, βοηθάει να αντιμετωπίσουμε απροσδιοριστίες σε πολύπλοκες γεωμετρίες. Αυτό το παρατηρούμε λύνοντας το πρόβλημα στο ρευστό κέλυφος μεταξύ του στερεού σωματιδίου και της φανταστικής εξωτερικής επιφάνειας με συνοριακές συνθήκες τύπου Kuwabara ή Happel. Συνεπώς, εξάγουμε αναλυτικές εκφράσεις για τα πεδία ταχύτητας, ολικής πίεσης, στροβιλισμού και ολικού τανυστή των τάσεων για διαφορετικά συστήματα μοντέλων σωματιδίων σε κύτταρο. Η επίπονη διαδικασία εκφυλισμού των αποτελεσμάτων σε απλούστερες γεωμετρίες συμπεριλαμβάνεται. / Particle–in–cell models for Stokes flow through a relatively homogeneous swarm of particles are of substantial practical interest, because they provide a relatively simple but reliable platform for the analytical or semianalytical solution of heat and mass transport problems. Most of the analytical models in this realm consider either spherical or, in latter versions, non–spherical but still axisymmetric shapes. Despite of the fact that many practical applications involve particles with axial symmetry, the general consideration consists of rigid particles of arbitrary shape. The present work is concerned with some interesting aspects of the theoretical analysis of creeping flow in three and two–dimensional spherical, spheroidal or ellipsoidal domains. Four different complete representations of the solutions for flows that follow the Stokes description are considered here. The first one, named Stokes representation, is obtained, expressing equation of motion in 2–D spherical or spheroidal coordinates, according to which the stream function is expanded in terms of separable or semiseparable eigenmodes, respectively. The other three, valid in non–axisymmetric geometries as well, are the Papkovich – Neuber, the Boussinesq – Galerkin and the Palaniappan et al. differential representations, where the velocity and total pressure fields are expressed in terms of harmonic and biharmonic eigenfunctions. These complete differential solutions hold true also for 2–D flow problems. Connection formulae are obtained for the case of axisymmetric and three–dimensional flows, which relate the harmonic and the stream potential functions. The interrelation is a consequence of the equation of the flow fields and specifies the exact relations of the connection between the corresponding constant coefficients of the potentials. The inversion of this procedure depends on the geometry and the complexity of the differential solutions. It seems that the Papkovich – Neuber differential representation offers us certain important advantages and forms a more complete way in order to solve 2–D and mostly 3–D cell models, where either stationary particles are embedded within a uniformly moving fluid (Kuwabara model) or the particles are moving with a constant uniform velocity and / or rotate with a constant angular velocity in an otherwise quiescent fluid (Happel model, self–sufficient in mechanical energy). The flexibility of the representation, inherited by its degrees of freedom, helps us to confront certain indeterminacies in complicated geometries. This is demonstrated by solving the problem of the flow in a fluid cell filling the space between the surface of the solid particle and the fictitious outer boundary with Kuwabara or Happel–type boundary conditions in several geometries. Thus, we obtain analytical expressions for the velocity, the total pressure, the angular velocity and the stress tensor fields for different particle–in–cell system models. The laborious task of reducing the results to simpler geometries is also included.
20

Group analysis of the Navier-Stokes equations

Boisvert, Robert Eugene 05 1900 (has links)
No description available.

Page generated in 0.0522 seconds