Spelling suggestions: "subject:"stokes’ integral"" "subject:"vstokes’ integral""
1 |
Détermination de l’exactitude d’un géoïde gravimétrique / Determination of the accuracy of gravimetric geoidIsmail, Zahra 09 May 2016 (has links)
La détermination des modèles du géoïde avec une précision centimètrique est parmi les objectifs principaux de différents groupes de recherche. Une des méthodes les plus utilisées afin de calculer un modèle de géoïde est le Retrait-Restauration en utilisant le terrain résiduel. Cette méthode combine les informations à des courtes, moyennes et grandes longueurs d’onde via trois étapes principales en appliquant la formule de Stokes. À chaque étape nous citons les sources d’erreurs et leur influence sur la précision du calcul du géoïde. Nous intéressons surtout à la correction du terrain dans la première étape (le retrait) et l’estimation de la précision de l’intégrale de Stokes dans la deuxième étape (l’intégration). La correction du terrain consiste à enlever les hautes fréquences du signal gravimétrique via un processus de calcul donné par le contexte de la méthode de Retrait-Restauration. Nous faisons des tests sur les différents paramètres pour choisir ses valeurs correspondant à une précision d’un centimètre notamment le choix des petit et grand rayons et l’influence de la résolution du MNT. Nous étudions aussi la phase d’intégrale de Stokes en limitant à la fonction standard de Stokes, sans modifications. Les paramètres de cette étape sont étudiés en générant des données synthétiques à partir du EGM2008 (Earth Gravity Model). Nous estimons la précision de l’intégration de Stokes dans différentes zones / The determination of a geoid model with a centemetric precision is one of the main interests of several research groups. One of the most used methods in use to calculate a geoid model is the Remove-Compute-Restor procedure using the residual terrain model. This threestep method combine the information at different wavelength frequency using the integration of Stokes. At each step, we mention the error sources and its influence over the precision of calculated geoid. We are mainly interested in the terrain correction at the first step (the remove) and in the estimation of the precision of the Stokes’ integration at the second step (the compute). The terrain correction removes the high frequencies of the gravimetric signal by using a calculation procedure in the frame of the Remove-Restore procedure. We perform our tests on the different parameters to choose its values corresponding to a precision of 1 cm especially the small and large radii and the influence of the DTM resolution. We study also the step of Stokes’ integration using the standard Srokes’ function. The parameters of this phase are studied by generating synthetic data from EGM2008. We estimate the precision of Stokes’s integral at different landscapes.
|
2 |
FUNDAMENTOS CONCEITUAIS DA DETERMINAÇÃO DO GEÓIDE PELO MÉTODO GRAVIMÉTRICO / FUNDAMENTAL CONCEPTS OF GRAVIMETRIC GEOID DETERMINATIONCargnelutti, Jocelaine 30 March 2007 (has links)
Fundamental concepts of gravimetric geoid determination with the objective to didatic methodology. It s described that the study of the real Earth have a large number of variable, what becomes impracticable the problem solution. It is studied then, the behavior of the real Earth by means of the parameter determinations of the normal Earth. Ellipsoid of revolution is used as surface mathematically defined and it
represents better the real Earth. The geoid determination consists of the determination of the geoidal undulation N and the deflection of the vertical θ , that is decomposed in the meridian component ξ (also called north-south component) and in the component prime vertical η (also called east-west component). The geoid undulation is given by the Stokes integral in function of the gravity anomalies and as the deflection of the vertical components are determined by the Vening-Meinesz s formulas. It is deduced the Legendre s polynomials, that are functions for the solution of the Stokes integral. It is described the potential theory of the gravity. It is showed that the horizontal geodesic networks (reference points with latitude and longitude geodetic coordinates) and the vertical geodetic networks (reference points with
heights) require, in its models, quantities from the geoid determination / Fundamentos conceituais da determinação do geóide pelo método gravimétrico com o objetivo de ordenação didática. Mostra-se que o estudo da Terra real possui um grande número de variáveis, o que torna a solução do problema inviável. Estuda-se então, o comportamento da Terra real por meio da determinação de parâmetros da Terra normal. Utiliza-se o elipsóide de revolução que é a superfície
matematicamente definida e que melhor representa a Terra real. Mostra-se que a determinação do geóide consiste na determinação da ondulação geoidal N e a deflexão da vertical θ , decomposta na componente meridiana ξ (também
denominada componente norte-sul) e na componente 1º vertical η (também denominada componente leste-oeste). Expõem como a ondulação do geóide é obtida pela integral de Stokes em função das anomalias da gravidade e como as
componentes do desvio da vertical são determinadas pelas fórmulas de Vening- Meinesz. Deduz-se os polinômios de Legendre que são funções para a solução da integral de Stokes. Pormenoriza-se os fundamentos do potencial da gravidade. Mostra-se que as redes geodésicas horizontais (conjunto de pontos com coordenadas curvilíneas geodésicas latitude e longitude) e as redes geodésicas verticais (conjunto de pontos com altitudes) requerem, em seus modelos, grandezas que provêm da determinação do geóide
|
Page generated in 0.0626 seconds