Spelling suggestions: "subject:"stokes flows"" "subject:"stokes slows""
1 |
Resonance phenomena and long-term chaotic advection in Stokes flowsAbudu, Alimu January 2011 (has links)
Creating chaotic advection is the most efficient strategy to achieve mixing in a microscale or in a very viscous fluid, and it has many important applications in microfluidic devices, material processing and so on. In this paper, we present a quantitative long-term theory of resonant mixing in 3-D near-integrable flows. We use the flow in the annulus between two coaxial elliptic counter-rotating cylinders as a demonstrative model. We illustrate that such resonance phenomena as resonance and separatrix crossings accelerate mixing by causing the jumps of adiabatic invariants. We calculate the width of the mixing domain and estimate a characteristic time of mixing. We show that the resulting mixing can be described in terms of a single diffusion-type equation with a diffusion coefficient depending on the averaged effect of multiple passages through resonances. We discuss what must be done to accommodate the effects of the boundaries of the chaotic domain. / Mechanical Engineering
|
2 |
Viscoelastic Mobility Problem Using A Boundary Element MethodNhan, Phan-Thien, Fan, Xi-Jun 01 1900 (has links)
In this paper, the complete double layer boundary integral equation formulation for Stokes flows is extended to viscoelastic fluids to solve the mobility problem for a system of particles, where the non-linearity is handled by particular solutions of the Stokes inhomogeneous equation. Some techniques of the meshless method are employed and a point-wise solver is used to solve the viscoelastic constitutive equation. Hence volume meshing is avoided. The method is tested against the numerical solution for a sphere settling in the Odroyd-B fluid and some results on a prolate motion in shear flow of the Oldroyd-B fluid are reported and compared with some theoretical and experimental results. / Singapore-MIT Alliance (SMA)
|
3 |
Higher-Order Spectral/HP Finite Element Technology for Structures and Fluid FlowsVallala, Venkat Pradeep 16 December 2013 (has links)
This study deals with the use of high-order spectral/hp approximation functions in the finite element models of various nonlinear boundary-value and initial-value problems arising in the fields of structural mechanics and flows of viscous incompressible fluids. For many of these classes of problems, the high-order (typically, polynomial order p greater than or equal to 4) spectral/hp finite element technology offers many computational advantages over traditional low-order (i.e., p < 3) finite elements. For instance, higher-order spectral/hp finite element procedures allow us to develop robust structural elements for beams, plates, and shells in a purely displacement-based setting, which avoid all forms of numerical locking. The higher-order spectral/hp basis functions avoid the interpolation error in the numerical schemes, thereby making them accurate and stable. Furthermore, for fluid flows, when combined with least-squares variational principles, such technology allows us to develop efficient finite element models, that always yield a symmetric positive-definite (SPD) coefficient matrix, and thereby robust direct or iterative solvers can be used. The least-squares formulation avoids ad-hoc stabilization methods employed with traditional low-order weak-form Galerkin formulations. Also, the use of spectral/hp finite element technology results in a better conservation of physical quantities (e.g., dilatation, volume, and mass) and stable evolution of variables with time in the case of unsteady flows. The present study uses spectral/hp approximations in the (1) weak-form Galerkin finite element models of viscoelastic beams, (2) weak-form Galerkin displacement finite element models of shear-deformable elastic shell structures under thermal and mechanical loads, and (3) least-squares formulations for the Navier-Stokes equations governing flows of viscous incompressible fluids. Numerical simulations using the developed technology of several non-trivial benchmark problems are presented to illustrate the robustness of the higher-order spectral/hp based finite element technology.
|
Page generated in 0.0356 seconds