• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Immersed and Discontinuous Finite Element Methods

Chaabane, Nabil 20 April 2015 (has links)
In this dissertation we prove the superconvergence of the minimal-dissipation local discontinuous Galerkin method for elliptic problems and construct optimal immersed finite element approximations and discontinuous immersed finite element methods for the Stokes interface problem. In the first part we present an error analysis for the minimal dissipation local discontinuous Galerkin method applied to a model elliptic problem on Cartesian meshes when polynomials of degree at most <i>k</i> and an appropriate approximation of the boundary condition are used. This special approximation allows us to achieve <i>k</i> + 1 order of convergence for both the potential and its gradient in the L<sup>2</sup> norm. Here we improve on existing estimates for the solution gradient by a factor &#8730;h. In the second part we present discontinuous immersed finite element (IFE) methods for the Stokes interface problem on Cartesian meshes that does not require the mesh to be aligned with the interface. As such, we allow unfitted meshes that are cut by the interface. Thus, elements may contain more than one fluid. On these unfitted meshes we construct an immersed Q<sub>1</sub>/Q<sub>0</sub> finite element approximation that depends on the location of the interface. We discuss the basic features of the proposed Q<sub>1</sub>/Q<sub>0</sub> IFE basis functions such as the unisolvent property. We present several numerical examples to demonstrate that the proposed IFE approximations applied to solve interface Stokes problems maintain the optimal approximation capability of their standard counterpart applied to solve the homogeneous Stokes problem. Similarly, we also show that discontinuous Galerkin IFE solutions of the Stokes interface problem maintain the optimal convergence rates in both L<sup>2</sup> and broken H<sup>1</sup> norms. Furthermore, we extend our method to solve the axisymmetric Stokes interface problem with a moving interface and test the proposed method by solving several benchmark problems from the literature. / Ph. D.
2

A class of immersed finite element methods for Stokes interface problems

Jones, Derrick T. 30 April 2021 (has links)
In this dissertation, we explore applications of partial differential equations with discontinuous coefficients. We consider the nonconforming immersed finite element methods (IFE) for modeling and simulating these partial differential equations. A one-dimensional second-order parabolic initial-boundary value problem with discontinuous coefficients is studied. We propose an extension of the immersed finite element method to a high-order immersed finite element method for solving one-dimensional parabolic interface problems. In addition, we introduce a nonconforming immersed finite element method to solve the two-dimensional parabolic problem with a moving interface. In the nonconforming IFE framework, the degrees of freedom are determined by the average integral value over the element edges. The continuity of the nonconforming IFE framework is in the weak sense in comparison the continuity of the conforming IFE framework. Numerical experiments are provided to demonstrate the features and the robustness of these methods. We introduce a class of lowest-order nonconforming immersed finite element methods for solving two-dimensional Stokes interface problem. On triangular meshes, the Crouzeix-Raviart element is used for velocity approximation, and piecewise constant for pressure. On rectangular meshes, the Rannacher-Turek rotated $Q_1$-$Q_0$ finite element is used. We also consider a new mixed immersed finite element method for the Stokes interface problem on an unfitted mesh. The proposed IFE space uses conforming linear elements for one velocity component and nonconforming linear elements for the other component. The new vector-valued IFE functions are constructed to approximate the interface jump conditions. Basic properties including the unisolvency and the partition of unity of these new IFE methods are discussed. Numerical approximations are observed to converge optimally. Lastly, we apply each class of the new immersed finite element methods to solve the unsteady Stokes interface problem. Based on the new IFE spaces, semi-discrete and full-discrete schemes are developed for solving the unsteady Stokes equations with a stationary or a moving interface. A comparison of the degrees of freedom and number of elements are presented for each method. Numerical experiments are provided to demonstrate the features of these methods.

Page generated in 0.0585 seconds