• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 19
  • 17
  • 15
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Solution-based chemical synthesis of electrode materials for electrochemical power sources /

Jeong, Yeon Uk, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 178-184). Available also in a digital version from Dissertation Abstracts.
42

Synthesis of novel high energy density cathode materials for lithium rechargeable batteries

Bewlay, Stephen L. January 2006 (has links)
Thesis (Ph.D.)--University of Wollongong, 2006. / Typescript. Includes bibliographical references: leaf 188-189.
43

Synthesis and characterization of nanostructured electrode materials for rechargeable lithium ion batteries

Park, Min Sik. January 2008 (has links)
Thesis (Ph.D.)--University of Wollongong, 2008. / Typescript. Includes bibliographical references: page 205-222.
44

Sequestration of CO₂ by chemically reactive aqueous K₂CO₃ in high efficiency adsorbents using microfibrous media entrapped support particulates

Sathitsuksanoh, Noppadon, Tatarchuk, Bruce J. January 2007 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (p.103-108).
45

Development of quaternary ammonium based electrolytes for rechargeable batteries and fuel cells

Lang, Christopher M. January 2006 (has links)
Thesis (Ph. D.)--Chemical and Biomolecular Engineering, Georgia Institute of Technology, 2007. / Kohl, Paul, Committee Chair ; Bottomley, Lawrence, Committee Member ; Eckert, Charles, Committee Member ; Fuller, Tom, Committee Member ; Teja, Amyn, Committee Member.
46

An investigation into the use of the vanadium redox flow energy storage system for peak-shaving and load-leveling

Diko, Mpho 04 1900 (has links)
Thesis (MScEng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: This thesis investigates the credibility of the vanadium redox flow energy storage system, sometimes termed vanadium redox battery (VRB). The focus is on the use of this technology in peak-shaving and load-leveling applications. The initial problem is to find a suitable mathematical model for representing the daily load profile. A sinusoidal function is identified as an elementary approximation of the first order. Due to the periodicity characteristics that are inherent in a daily load profile, the Fast Fourier Transform (FFT) algorithm is identified as a mathematical model that closely resembles a load profile. The main theme in this thesis is the determination of an optimal solution during the peak-shaving process. In this particular context, the optimal solution refers to the following: With the energy capacity of the VRB and the power rating of the entire system considered as the constraints, the interest is on (i) the constant power that the VRB can deliver in order to bring down the maximum demand quite significantly, (ii) and the time interval in which this constant power is delivered. Therefore, the VRB power delivered during peak-shaving (PVRB) and the corresponding time interval are the main two parameters under consideration in the optimization process. The mathematical algorithm that can be used to determine suitable values for these two parameters is developed. Maple" V 5.1 is used for determining the solution analytically. The obtained results are verified by simulation with Excel". The investigation into the economic benefits that may be derived from the utilization of the vanadium energy storage device is also presented. / AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die waarde en toepassing van die vadium "redox" vloei energie stoorstelsel (VRB). Die fokus is op die gebruik van hierdie tegnologie om pieklas te verminder en om laste meer egalig te maak. Die aanvanklike probleem is om 'n geskikte wiskundige model vir die daaglikse las-profiel te kry. Deur gebruik te maak van sinus-komponente en die toepassing van die Vinnige Fourier Transform (FFT) is hierdie probleem opgelos. Die hooftema van hierdie werk is om 'n analitiese oplossing te vind vir die optimale toepassing van die konsep vir pieklas vermindering. In hierdie konteks verwys die optimale oplossing na die volgende: Met die gegewe verrnoe van die VRB stelsel en drywingsvermoe van die kragelektronika is die vrae rondom (i) die konstante drywing wat die VRB kan lewer om die maksimum aanvraag van die las beduidend te verminder en (ii) die tydsduur waarin dit plaasvind. Dus is die twee veranderlikes waarvoor oplossings in die optimale proses gesoek word die drywing (PVRS) en die tyd-interval daarvan. Die wiskundige algoritme is met die hulp van Maple® V5.1 ontwikkel. Die resultate is daarna met behulp van simulasies in Excel® getoets. 'n Analise van die moontlike ekonomiese voordele is ook ondersoek.
47

Electrochemical investigation of valve regulated lead acid batteries

Ferg, Ernst Eduard January 2004 (has links)
One of the technical advances made by the lead-acid battery industry in the field of portable power supply was the development of the valve regulated lead-acid battery (VRLA). This battery reduced the necessity for periodic servicing in terms of having to replenish the cells with distilled water. Further, this new type of battery can now be installed near sensitive electronic equipment without the danger of acid spill or dangerous fumes being emitted. In addition, longer service performance is achieved in terms of life cycle capacity, when compared to the conventional flooded type batteries. However, the new type of battery requires the manufacturing of high precision electrodes and components with low tolerances for error. In order for the manufacturers to produce such a premium product, a thorough understanding of the electrochemistry of the inner components is necessary. None of the South African lead-acid battery manufacturers are currently making VRLA batteries to supply a very competitive global market, where a large range of sizes and capabilities are available. In order to introduce the VRLA battery into such a competing market in South Africa, a niche area for its application was identified in order to establish the viability of manufacturing such a battery locally. This is done by integrating the VRLA concept into an existing battery, such as the miners cap lamp (MCL) battery. Its application is specific with well-defined performance criteria in a relatively large consumable market in the South African mining industry. The study looked at various components within a local manufacturing environment that required a better understanding and modification of the processes to build VRLA MCL batteries. This included a detailed study of the manufacturing processes of the positive electrode. The study involved the investigation of the types of grid alloys used, the type of electrode design, such as tubular or flat plate, the addition of redlead to the paste mixing process and subjecting the batteries to accelerated life cycle testing. A better understanding of the oxygen recombination cycle was also performed in order to evaluate the correct use of certain design criteria in the manufacturing process. This included the study of the pressure release valve and the type of positive electrode used. The study also looked at developing an inexpensive analytical technique to evaluate the porosity of cured and formed electrodes using a glycerol displacement method. The monitoring of the state of health (SoH) of VRLA batteries on a continuous basis is an important parameter in unique applications such as remote power supply. A device was developed to monitor the SoH of VRLA batteries on a continuous basis. The working principle of the device was tested on a MCL VRLA battery. With the development of other types of VRLA batteries for specific applications such as in stand-by power supplies, the monitoring device would then be integrated in the battery design.
48

Determining the Power and Energy Capacity of a Battery Energy Storage System Utilizing a Smoothing Feeder Profile to Accommodate High Photovoltaic Penetration on a Distribution Feeder

Mansour, Osama Mohammed Abbas Aly 25 July 2016 (has links)
Electricity is a perishable commodity; once it is generated it needs to be consumed or stored. Electric energy storage provides both power and energy capacity. Power capacity applications reduce the need for generation, while energy capacity allows for energy consumption to be decoupled from generation. Previous research was done to develop an algorithm for determining the power (MW) and energy (MWh) capacities of a battery energy storage system (BESS) to mitigate the adverse impacts of high levels of photovoltaic (PV) generation. The algorithm used a flat feeder profile, and its performance was demonstrated on the equinoxes and solstices. Managing feeder power leads to fewer voltage fluctuations along the length of the feeder, potentially mitigating load management issues caused by variability of renewable generation and load profile. These issues include lighting flicker, compressor seizing, equipment shut-off, loss of motor torque, frequent transformer tap changes and even voltage collapse due to loss of reactive power support. The research described in this thesis builds on this algorithm by incorporating a smoothed feeder profile and testing it over an entire year. Incorporating a smoothing function reduces the requisite BESS energy capacity necessary to provide firming and shaping to accommodate the stochastic nature of PV. Specifically, this method is used to conduct a year-long study on a per second basis, as well as a one-minute basis, for a distribution feeder. Statistical analytical methods were performed to develop recommendations for appropriately sizing the BESS. This method may be used to determine the amount of PV generation that could be installed on a distribution feeder with a minimal investment in the BESS power and energy capacities that would be required to manage the distribution feeder power. Results are presented for PV penetration levels of 10%-50% of the distribution feeder capacity and show that the use of a smooth feeder profile reduces the required energy capacity by a minimum factor of 10 when compared to a flat feeder profile. Results indicated that it is sufficient to have a one-minute sampling rate, as it provides the necessary granularity to model cloud-induced fluctuations. This method can be applied to any distribution feeder where a load profile and a PV profile are available.
49

Continuum Level Physics-based Model on Understanding and Optimizing the Lithium Transport in High-Energy-Density LIB/LMB Electrodes

Hui, Zeyu January 2022 (has links)
As an efficient means of energy storage, rechargeable batteries, especially the lithium-ion batteries (LIBs) have been a vital component in solving the upcoming energy crisis and environmental problems. Recently, the development of electric vehicle market puts new requirement on the next generation LIBs, including superior energy density, safety and cycling stability, etc. Compared with experimental investigation, Physics-based models provide a surrogate method to not only tackle the underlying physics of the complex battery system, but also optimize the design of battery systems. In this thesis, I will show how I use the physics-based continuum model and cooperate with some experimental methods to understand the lithium transport phenomena inside the multiscale battery electrode systems, based on which the models are then applied to guide the experimental optimization of battery electrode design and to quantitively understand the degradation of high-performance electrodes. The thesis is divided into three parts. First part (Chapter 2) presents a systematical model selection study on the multiscale LiNi₀.₃₃Mn₀.₃₃Co₀.₃₃O₂ (NMC₁₁₁) electrode. Discharge and voltage relaxation curves, interrogated with theory, are used to distinguish between lithium transport impedance that arise on the scale of the active crystal and on the scale of agglomerates (secondary particles) comprised of nanoscale crystals. Model-selection algorithms are applied to determine that the agglomerate scale transport is dominant in the NMC₁₁₁ electrode studied here. This study not only discovers the dominant length scale for lithium transport, but also provide a validated model (the agglomerate model) for later study. The second part (Chapter 3 & 4) talks about understanding & optimization of ion transport in porous electrodes. In Chapter 3, multi-scale physics-based models for different active material systems, which have been parameterized and validated with discharge experiments, are optimized by varying porosity and mass loading to achieve maximum volumetric energy density. The optimization results show that with a re-scaling of the current rate, the optimal results follow a general design rule that is captured in a convenient correlation. Chapter 4 extends the model to simulate the performance of advanced electrode architectures utilizing aligned channels, by quantifying the impact of aligned channel electrode structures on cell rate capability. Then the optimization algorithm in Chapter 3 is applied to these aligned-channel electrodes. The final part (Chapter 5) shows how I use the physics-based model to quantitatively analyze the battery degradation. The validated model is applied to cycling data to obtain parameter estimates indicative of degradation modes. It’s found that growth rates of interfacial impedance and active material loss are greater at 4.5 V, as might be expected. However, when charged to 4.5V, degradation rates are lower at a cycling C-rate of 1.0 h⁻¹ than at 0.5 h⁻¹. Once performance changes are quantified, we use further simulation to evaluate the contribution of individual degradation modes to fade of cell performance metric such as capacity, power density, and energy density.
50

Multivalent Rechargeable Batteries

Padigi, Sudhaprasanna Kumar 21 July 2015 (has links)
Li+ ion batteries have been the mainstay of high energy storage devices that have revolutionized the operating life time of consumer electronic devices for the past two decades. However, there is a steady increase in demand for energy storage devices with the ability to store more energy and deliver them at high power at low cost, without comprising safety and lifetime. Li-ion batteries have had significant challenges in increasing the amount of stored energy without affecting the overall lifetime and the ability to deliver stored energy. In order to store and deliver more energy, more lithium ions need to be inserted and extracted from a given electrode (cathode or anode). Upon inserting a large number of Li ions, the crystal lattice of the materials undergo severe mechanical distortions, leading to un-desirable structural changes. This results in underutilization of theoretical energy storage capacities of the electrodes and early failure of the batteries owing to instabilities in the electrode materials. Unlike monovalent Li+ ions, multivalent rechargeable batteries offer a potential solution to the above problems. Multivalent cations, such as Ca2+, are doubly-ionized as opposed to Li+ which is a monovalent cation. The advantages of using Ca2+ ions instead of Li+ ions are multifold. Due to the doubly-ionized nature, only half the number of Ca2+ ions need to be inserted and extracted from a given electrode to store and deliver energy from a high capacity cathode as compared to Li+ ions. This reduces the probability of lattice distortion and un-desirable structural changes, further leading to increased utilization of high theoretical energy storage capacities of the electrodes (cathode and anode). The use of Ca2+ ions also helps in delivering twice the amount of current density as compared to Li+ ions due to its doubly ionized nature. In this work, a set of eight metal hexacyanoferrate compounds were synthesized using the following metal ions: Ba2+, Mn2+, Zn2+, Co2+, Fe3+, Al3+, Sn4+, Mo5+. The resulting metal hexacyanoferrate compounds were subjected to physical characterization using scanning electron microscope (SEM) and powder x-ray diffraction (XRD), to determine physical properties such as size, morphology, unit cell symmetry and unit cell parameters. This was followed by electrochemical characterization utilizing cyclic voltammetry and galvanic cycling, to determine the specific capacity and kinetics involved in the transport of Ca2+ ions to store charge. Optical characterization of the metal hexacyanoferrates using Fourier transform infrared (FTIR) spectroscopy, allowed for the identification of metal-nitrogen stretching frequency, which was used as a measure of the strength of the metal-nitrogen bond to understand the role of the above mentioned metal ions in electron density distribution across the unit cell of the metal hexacyanoferrates. The specific capacity utilization of the metal hexacyanoferrates, when compared to the electronegativity values (Xi) of the above mentioned metal ions, the σ- parameter, and the metal-nitrogen stretching frequency (v), revealed an empirical trend suggesting that the materials (FeHCF, CaCoHCF and CaZnHCF) that possessed intermediates values for the above mentioned parameters demonstrated high capacity utilization (≥50%). Based on these empirical trends, it is hypothesized that a uniform distribution of electron density around a unit cell, as reflected by intermediate values of the electronegativity (Xi) of the above mentioned metal ions, the σ-parameter and the metal-nitrogen stretching frequency (v), results in minimal electrostatic interactions between the intercalating cation and the host unit cell lattice. This results in relatively easy diffusion of the cations, leading to high specific capacity utilization for metal hexacyanoferrate cathodes. These parameters may be used to select high efficiency cathode materials for multivalent batteries.

Page generated in 0.0885 seconds