Spelling suggestions: "subject:"storm surge"" "subject:"storm purge""
21 |
An evaluation of the potential of coastal wetlands for hurricane surge and wave energy reductionLoder, Nicholas Mason 15 May 2009 (has links)
Given the past history and future risk of storm surge in the United States,
alternative storm protection techniques are needed to protect vital sectors of the
economy and population, particularly within southeastern Louisiana. It is widely
hypothesized that coastal wetlands offer protection from storm surge and wave action,
though the extent of this protection is unknown due to the complex physics behind
vegetated flow dynamics. This thesis presents numerical modeling results that estimate
the relative sensitivity of waves and storm surge to characteristics embodied by coastal
wetlands. An idealized grid domain and 400 km2 (20 km by 20 km) marsh feature
provide a controlled environment for evaluating marsh characteristics, including bottom
friction, elevation, and continuity. Marsh continuity is defined as the ratio of healthy
marsh area to open water area within the total wetland area.
It is determined that increased bottom friction reduces storm surge levels and
wave heights. Through the roughening of the bottom from sandy to covered with tall
grass, it is estimated that waves may be dampened by up to 1.2 m at the coast, and peak
surge may be reduced by as much as 35%. The lowering of marsh elevation generally increases wave heights and decreases surge levels, as expected. A 3.5 m decrease in
marsh elevation results in as much as a 2.6 m increase in wave height, and up to a 15%
decrease in surge levels. Reductions in marsh continuity enhance surge conveyance into
and out of the marsh. For storms of low surge potential, surge is increased by as much
as 70% at the coast due to decreasing marsh continuity from 100% to 50%, while for
storms of high surge potential, surge is decreased by 5%. This indicates that for storms
of high surge potential, a segmented marsh may offer comparable surge protection to
that of a continuous marsh. Wave heights are generally increased within the marsh due
to the transmission of wave energy through marsh channels. Results presented in this
thesis may assist in the justification of coastal wetland mitigation, and optimize marsh
restoration in terms of providing maximum storm protection. Read more
|
22 |
Extreme Hurricane Surge Estimation for Texas Coastal Bridges Using Dimensionless Surge Response FunctionsSong, Youn Kyung 2009 August 1900 (has links)
Since the devastating hurricane seasons of 2004, 2005, and 2008, the stability
and serviceability of coastal bridges during and following hurricane events have become
a main public concern. Twenty coastal bridges, critical for hurricane evacuation and
recovery efforts, in Texas have been identified as vulnerable to hurricane surge and
wave action. To accurately assess extreme surges at these bridges, a dimensionless
surge response function methodology was adopted. The surge response function defines
maximum surge in terms of hurricane meteorological parameters such as hurricane size,
intensity, and landfall location. The advantage of this approach is that, given a limited
set of discrete hurricane surge data (either observed or simulated), all possible hurricane
surges within the meteorological parameter space may be described. In this thesis, we
will first present development of the surge response function methodology optimized to
include the influence of regional continental shelf geometry. We will then demonstrate
surge response function skill for surge prediction by comparing results with surge
observations for Hurricanes Carla (1961) and Ike (2008) at several stations along the coast. Finally, we apply the improved surge response function methodology to quantify
extreme surges for Texas coastal bridge probability and vulnerability assessment. Read more
|
23 |
Storm surge flooding: risk perception and coping strategies of residents in Tsawwassen, British ColumbiaRomanowski, Sharon A Unknown Date
No description available.
|
24 |
Spatial–temporal Modelling for Estimating Impacts of Storm Surge and Sea Level Rise on Coastal Communities: The Case of Isle Madame in Cape Breton, Nova Scotia, CanadaPakdel, Sahar 26 August 2011 (has links)
More frequent and harsh storms coupled with sea level rise are affecting Canada’s sensitive coastlines. This research studies Isle Madame in Cape Breton, Nova Scotia which has been designated by Natural Resource Canada as a sea level rise vulnerable coastal community in Canada. The research models the spatial and temporal impacts of sea level rise from storm surge by focusing on identifying vulnerable areas in the community via geographical information systems (GIS) using ArcGIS, as well as modeling dynamic coastal damage via system dynamics using STELLA. The research evaluates the impacts in terms of the environmental, social, cultural, economic pillars that profile the coastal community for a series of modelled Storm Scenarios. This research synthesizes information from a variety of sources including the coastal ecology and natural resources, as well as human society and socioeconomic indicators included in the four mentioned pillars. The objective of the research is to determine vulnerable areas on Isle Madame susceptible to storm damage, and consequently, to improve local community knowledge and preparedness to more frequent harsh storms. This research therefore presents a dynamic model for the evaluation of storm impacts in Isle Madame designed with the goal to help the community ultimately to plan and implement a strategy to adapt to pending environmental change. Read more
|
25 |
Storm surge flooding: risk perception and coping strategies of residents in Tsawwassen, British ColumbiaRomanowski, Sharon A 06 1900 (has links)
This thesis examines how residents perceived and coped with storm surge flooding in Tsawwassen, British Columbia. On February 4, 2006 the community experienced a storm surge flood that affected residents within the neighbourhoods of Beach Grove and Boundary Bay Village. This study identifies how residents perceived and coped with the flood, and what factors influenced how individuals perceived and coped. Qualitative methods were used for this study, and a total of 23 in-person interviews were completed. The findings of this research showed that how participants perceived the threat of storm surge flooding and how they coped with the flooding varied greatly. Government intervention; the influence of family, friends and neighbours; the perceived benefits of living in the area; experience; financial support; and perception of other hazards all influenced how the participants perceived and coped with the storm surge flood.
|
26 |
EFFECTS OF EXPERIMENTAL STORM SURGE AND SEDIMENTATION ON PITCHER PLANTS (SARRACENIA PURPUREA) AND ASSOCIATED ASSEMBLAGES IN A COASTAL PINE SAVANNAAbbott, Matthew John 01 December 2012 (has links)
Sea-level rise and stronger hurricanes associated with global climate change will likely result in farther reaching storm surges that will greatly affect coastal ecosystems. These surges can transport nutrients, salt water, and sediment to nutrient poor, fresh (i.e. low salinity) pine savannas. Purple pitcher plants (Sarracenia purpurea ) are pine savanna inhabitants that could potentially be at a disadvantage because their pitcher morphology and stout structure may leave them prone to collecting saline water and sediment after a surge. In this study, separate field and greenhouse experiments were conducted to test the effects of storm surge water salinity and sediment type on pine savanna soil characteristics, plant community structure, and pitcher plant vitality. In the field, plots (containing &ge genet of S. purpurea ) were experimentally storm surged with fresh or saline water crossed with one of four sediment types (local, foreign, fertilized foreign, or no sediment). Saline water inundation resulted in significantly higher pitcher plant mortality than the fresh water treatment combinations. However, a subsequent prescribed fire and regional drought affected the study area during the next growing season, resulting in the decline of all the pitcher plants to zero or near zero percent cover. Soil data revealed that the combination of salt water and fertilized sediment resulted in short-term increases in soil-water conductivity and nitrogen availability. Interestingly, there were no significant differences in plant community structure between treatments, suggesting that the community as a whole is not as vulnerable as the pitcher plants to the cumulative effects of multiple stressors (i.e. storm surge, fire, and drought) operating in this system. Indicator species analysis revealed that some species were significant indicators of certain treatments; thus suggesting that pitcher plants are not the only species affected by storm surge. In the greenhouse, pitcher plants received various forms of sediment (i.e. no sediment, sterile sediment, or one of two levels of fertilized sediment) within their pitchers to determine if nutrient uptake is either inhibited or enhanced. Plants that received sterile sediment had higher carbon:nitrogen ratios and higher leaf mass per unit area. Eutrophic sediment deposition resulted in a temporary decrease in relative growth rate as well as changes in pitcher morphology. There were no differences in chlorophyll content and photosynthetic rates between treatments. Both the field and greenhouse experiments indicate that global climate change may indirectly contribute to the further decline of southeastern purple pitcher plant populations in the future. Read more
|
27 |
Spatial–temporal Modelling for Estimating Impacts of Storm Surge and Sea Level Rise on Coastal Communities: The Case of Isle Madame in Cape Breton, Nova Scotia, CanadaPakdel, Sahar January 2011 (has links)
More frequent and harsh storms coupled with sea level rise are affecting Canada’s sensitive coastlines. This research studies Isle Madame in Cape Breton, Nova Scotia which has been designated by Natural Resource Canada as a sea level rise vulnerable coastal community in Canada. The research models the spatial and temporal impacts of sea level rise from storm surge by focusing on identifying vulnerable areas in the community via geographical information systems (GIS) using ArcGIS, as well as modeling dynamic coastal damage via system dynamics using STELLA. The research evaluates the impacts in terms of the environmental, social, cultural, economic pillars that profile the coastal community for a series of modelled Storm Scenarios. This research synthesizes information from a variety of sources including the coastal ecology and natural resources, as well as human society and socioeconomic indicators included in the four mentioned pillars. The objective of the research is to determine vulnerable areas on Isle Madame susceptible to storm damage, and consequently, to improve local community knowledge and preparedness to more frequent harsh storms. This research therefore presents a dynamic model for the evaluation of storm impacts in Isle Madame designed with the goal to help the community ultimately to plan and implement a strategy to adapt to pending environmental change. Read more
|
28 |
Lidar In Coastal Storm Surge Modeling: Modeling Linear Raised FeaturesCoggin, David 01 January 2008 (has links)
A method for extracting linear raised features from laser scanned altimetry (LiDAR) datasets is presented. The objective is to automate the method so that elements in a coastal storm surge simulation finite element mesh might have their edges aligned along vertical terrain features. Terrain features of interest are those that are high and long enough to form a hydrodynamic impediment while being narrow enough that the features might be straddled and not modeled if element edges are not purposely aligned. These features are commonly raised roadbeds but may occur due to other manmade alterations to the terrain or natural terrain. The implementation uses the TauDEM watershed delineation software included in the MapWindow open source Geographic Information System to initially extract watershed boundaries. The watershed boundaries are then examined computationally to determine which sections warrant inclusion in the storm surge mesh. Introductory work towards applying image analysis techniques as an alternate means of vertical feature extraction is presented as well. Vertical feature lines extracted from a LiDAR dataset for Manatee County, Florida are included in a limited storm surge finite element mesh for the county and Tampa Bay. Storm surge simulations using the ADCIRC-2DDI model with two meshes, one which includes linear raised features as element edges and one which does not, verify the usefulness of the method. Read more
|
29 |
Subgrid-scale Modeling of Tsunami and Storm Surge Inundation in Coastal Urban Area / 沿岸市街地を対象としたサブグリッドスケール津波・高潮浸水モデルの開発Fukui, Nobuki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23852号 / 工博第4939号 / 新制||工||1771(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 森 信人, 教授 平石 哲也, 准教授 志村 智也 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
30 |
Development and Uncertainty Quantification of Hurricane Surge Response Functions and Sea-Level Rise Adjustments for Coastal BaysTaylor, Nicholas Ramsey 16 June 2014 (has links)
Reliable and robust methods of extreme value based hurricane surge prediction, such as the Joint Probability Method (JPM), are critical in the coastal engineering profession. The JPM has become the preferred surge hazard assessment method in the United States; however, it has a high computational cost: one location can require hundreds of simulated storms, and more than ten thousand computational hours to complete. Optimal sampling methods that use physics based surge response functions (SRFs), can reduce the required number of simulations. This study extends the development of SRFs to bay interior locations at Panama City, Florida. Mean SRF root-mean-square (RMS) errors for open coast and bay interior locations were 0.34 m and 0.37 m, respectively; comparable to expected ADCIRC model errors (~0.3 m—0.5 m). Average uncertainty increases from open coast and bay SRFs were 10% and 12%, respectively.
Long-term climate trends, such as rising sea levels, introduce nonstationarity into the simulated and historical surge datasets. A common approach to estimating total flood elevations is to take the sum of projected sea-level rise (SLR) and present day surge (static approach); however, this does not account for dynamic SLR effects on surge generation. This study demonstrates that SLR has a significant dynamic effect on surge in the Panama City area, and that total flood elevations, with respect to changes in SLR, are poorly characterized as static increases. A simple adjustment relating total flood elevation to present day conditions is proposed. Uncertainty contributions from these SLR adjustments are shown to be reasonable for surge hazard assessments. / Master of Science Read more
|
Page generated in 0.0563 seconds