• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Natural Language Processing of Stories

Rittichier, Kaley J. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this thesis, I deal with the task of computationally processing stories with a focus on multidisciplinary ends, specifically in Digital Humanities and Cultural Analytics. In the process, I collect, clean, investigate, and predict from two datasets. The first is a dataset of 2,302 open-source literary works categorized by the time period they are set in. These works were all collected from Project Gutenberg. The classification of the time period in which the work is set was discovered by collecting and inspecting Library of Congress subject classifications, Wikipedia Categories, and literary factsheets from SparkNotes. The second is a dataset of 6,991 open-source literary works categorized by the hierarchical location the work is set in; these labels were constructed from Library of Congress subject classifications and SparkNotes factsheets. These datasets are the first of their kind and can help move forward an understanding of 1) the presentation of settings in stories and 2) the effect the settings have on our understanding of the stories.
2

Natural Language Processing of Stories

Kaley Rittichier (12474468) 28 April 2022 (has links)
<p>In this thesis, I deal with the task of computationally processing stories with a focus on multidisciplinary ends, specifically in Digital Humanities and Cultural Analytics. In the process, I collect, clean, investigate, and predict from two datasets. The first is a dataset of 2,302 open-source literary works categorized by the time period they are set in. These works were all collected from Project Gutenberg. The classification of the time period in which the work is set was discovered by collecting and inspecting Library of Congress subject classifications, Wikipedia Categories, and literary factsheets from SparkNotes. The second is a dataset of 6,991 open-source literary works categorized by the hierarchical location the work is set in; these labels were constructed from Library of Congress subject classifications and SparkNotes factsheets. These datasets are the first of their kind and can help move forward an understanding of 1) the presentation of settings in stories and 2) the effect the settings have on our understanding of the stories.</p>

Page generated in 0.0446 seconds