• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1196
  • 278
  • 187
  • 183
  • 153
  • 65
  • 62
  • 47
  • 31
  • 23
  • 14
  • 12
  • 9
  • 5
  • 4
  • Tagged with
  • 2858
  • 578
  • 475
  • 300
  • 298
  • 290
  • 265
  • 251
  • 220
  • 211
  • 207
  • 179
  • 163
  • 147
  • 142
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Behaviour of buried pipes and bored tunnels in sand

Talby, Robert January 1997 (has links)
This thesis essentially reports an investigation of the behaviour of buried (0.12 to 0.25m diameter) single-walled PVC-U and vitrified clay pipes during installation in a uniform sand surround and when subjected to applied surface loading. An additional simple study of tail void displacements due to tunnelling in sand is also presented. Controlled laboratory tests were conducted in a glass-faced, steel-sided box. The buried pipes were installed perpendicular to the glass face and were subjected to static and cyclic loading, simulating increasing overburden stress and the passing of traffic over a shallow buried pipe respectively. The simulated shallow tunnel tests were also conducted perpendicular to the glass and involved withdrawal of the outer of two concentrically placed tubes. Photographs were taken of the sand particles and the buried structure in the plane of the cross section together with strain gauge readings on the pipe or tunnel wall throughout installation and loading/shield withdrawal. The resulting sand displacements are presented in the form of horizontal and vertical contour plots. Pipe deflections and volumetric and shear strain contours of the sand were also determined for the buried pipe tests. The shape of the deformed pipe and the imposed stress at the pipe springline were inferred from the pipe wall strains. During the PVC-U pipe tests, the deformation of the pipe caused the applied stress to be transferred to the sidefill via arching in the surrounding soil. This was associated with a reduction of applied stress reaching the pipe. Increasing the initial soil stiffness reduced the magnitude of the pipe and soil displacements and the stress carried by the pipe. Use of a vitrified clay pipe however, caused the soil surround to settle relative to the pipe. Soil shear strain contour plots are used to highlight the mechanisms of the transfer of applied stress onto, or away from, the buried pipes, and are related to the shape of the deformed pipe in the PVC-U pipe tests. The test data also allowed standard buried pipe design methods and installation procedures to be critically appraised. The soil movements recorded during the tunnel tests were shown to be similar to those recorded during the buried PVC-U pipe tests, indicating a similar soil loading transfer mechanism.
302

Investigation of micro- and macro-phenomena in densely packed granular media using the discrete element method

Zhou, Chong January 2011 (has links)
Granular materials are in abundance in nature and are estimated to constitute over 75% of all raw materials passing through the industry. Granular or particulate solids are thus of considerable interest to many industrial sectors and research communities, where many unsolved challenges still remain. This thesis investigates the micro- and macro-phenomena in densely packed particulate systems by means of the Discrete Element Method (DEM), which is a numerical tool for analysing the internal complexities of granular material as the mechanical interactions are considered at the grain scale. It presents an alternative approach to phenomenological continuum approaches when studying localisation problems and finite deformation problems in granular materials. In order to develop a comprehensive theoretical understanding of particulate matter and to form a sound base to improve industrial processes, it is desirable to study the mechanical behaviour of granular solids subject to a variety of loading conditions. In this thesis, three loading actions were explored in detail, which are biaxial compression, rigid object penetration and progressive formation of granular piles. The roles of particle shape and contact friction in each of these loading scenarios were investigated. The resulting packing structures were compared and studied to provide a micromechanical insight into the development of contact force network which governs the collective response. The interparticle contact forces and displacements were then used to evaluate the equivalent continuum stress and strain components thus providing the link between micro- and macroscopic descriptions. The information collected from the evolution of strong contact network illustrates the underlying mechanism of force transmission and propagation. DEM simulations presented in this thesis demonstrate strong capability in predicting the bulk behaviour as well as capturing local phenomenon occurring in the system. The research first simulates a testing environment of biaxial compression in DEM, in which the phenomenon of strain localisation was investigated, with special attention given to the interpretation of underlying failure mechanism. Several key micromechanical quantities of interest were extracted to understand the bifurcation instability, such as force chains, contact orientation, particle rotation and void ratio. In the simulation of progressive formation of granular piles, a counterintuitive pressure profile with a significant pressure dip under the apex was predicted for three models under certain conditions. Both particle shape and preparation history were shown to be important in the resulting pressure distribution. During the rigid body penetration into a granular sample, the contact forces were used to evaluate the equivalent continuum stress components. Significant stress concentration was developed around the punch base which further led to successive collapse and reformation of force chains. Taking the advantage of micromechanical analysis at particle scale, two distinct bearing failure mechanisms were identified as the penetration proceeded. To further quantify the nature of strain mobilisation leading to failure, Particle Image Velocimetry (PIV) was employed to measure the deformation over small strain interval in association with shear band propagation in the biaxial test and deformation pattern in the footing test. The captured images from DEM simulation and laboratory experiments were evaluated through PIV correlation. This optical measuring technique is able to yield a significant improvement in the accuracy and spatial resolution of the displacement field over highly strained and localised regions. Finally, a series of equivalent DEM simulations were also conducted and compared with the physical footing experiments, with the objective of evaluating the capability of DEM in producing satisfactory predictions.
303

The mechanical response of low to high density Rohacell foams

Poxon, Sara January 2013 (has links)
The main aim of this thesis is to generate a deeper understanding of the mechanical behaviour of cellular materials, specifically for their use in aerospace applications. A closed-cell polymer foam material (Rohacell) of various foam densities was chosen for this investigation, and a comprehensive experimental study was conducted which generated significant findings that hitherto have not been reported in the literature. The research presented in this study revealed the following: The quasistatic response of Rohacell foam displays a compression/tension asymmetry in moduli and strength. In-situ experiments revealed that different macroscopic collapse mechanisms at different foam densities drove this behaviour. Improved experimental methods were developed to characterise the material response at various loading rates. Under compressive loading, as the relative density and loading rate increased, a transition in material behaviour from a ductile to brittle response at very high rates (~5x10^3 s^-1) was found, and tests conducted at different temperatures were used to validate and provide a better understanding of the causes for the observed rate dependency. The compression and tension properties of pre-crushed Rohacell foam loaded in different directions were measured, and with the use of three-point-bend tests it was shown that when the foams’ tension/compression asymmetry, or the changes in stiffness and strength due to pre-crushing (i.e. strain-induced anisotropy), are neglected, this leads to incorrect predictions of the foams’ structural response. Finally, a review of some existing Finite Element foam material models was conducted, and their ability to predict the foam response under complex loading was identified. The new data and understanding generated from this thesis will allow engineers and researchers, who are developing constitutive models for predicting the response of foam materials, specifically in aerospace applications, to account for more aspects of the mechanical behaviours in their Finite Element models.
304

Geophysical strain and tilt : measurement methodology and analysis of data

MacKay, Robert 01 January 1983 (has links)
Tilt and strain meters were installed on the Portland State University campus in the summer of 1982 and data was collected for 4 months. Instrument selection, operation, installation and performance are discussed. Suggestions that could enhance data quality and data collection efficiency are presented. An analysis procedure is suggested and an example of this procedure for an interval of data is discussed. The influence of the temperature, pressure, rainfall and solid earth tides on the signal is investigated, as well as the correlation between similar channels of the different tilt instruments. The temperature, rainfall and solid earth tides were all determined to have an influence on the instruments. A statistical test of the influence of the barometric pressure on the signal revealed no significant influence. A very low correlation between similar components of the different tilt instruments was observed aside from their thermal dependence. It was concluded that in order to obtain high quality data for the use in quantitative calculations, the temperature influence on the raw record must be minimized.
305

Role of Strain Imaging in Right Heart Disease: A Comprehensive Review

Kannan, Arun, Poongkunran, Chithra, Jayaraj, Mahendran, Janardhanan, Rajesh January 2014 (has links)
Advances in the imaging techniques of the heart have fueled the interest in understanding of right heart pathology. Recently, speckle tracking echocardiography has shown to aid in understanding various right heart diseases and better management. Its role is well established in diagnosing right heart failure, pulmonary artery hypertension, arrhythmogenic right ventricular dysplasia and congenital heart disease. We review the basic mechanics of speckle tracking and analyze its role in various right heart conditions.
306

An Investigation of the Structural Setting and Deformation of the Malmberget Iron Ore Deposits within the old Bergmästaren, Sparre and Kaptens Open Pits

Kearney, Thomas January 2016 (has links)
The Malmberget apatite iron ore deposit is one of the most important iron producers within Europe located within an area of world-renowned mines and mining companies. It is becoming increasingly accepted that in order to increase our resources it is essential to gain a better understanding of the formation and evolution of our known mineral deposits. This thesis is part of an ongoing multi-scale 4-dimensional geological modeling project as part of a collaboration between Vinnova, LKAB, Boliden & LTU. The aim of the which is to piece together the series of geological events that are responsible for the entire Gällivare mining district as seen today. This project looks at three smaller old open pits on the outer limbs of the synform fold structure that forms the Malmberget deposit. This thesis aims to gain a better understanding of the structures that have defined this current shape, and relating them to the regional-scale structural evolution. The results show two distinct deformation events, D1and D2, with each event leaving their own signature on the region. D1 deformation resulted in the formation of high strain zones and a gneissic cleavage within the volcanic rocks. D2 deformation subsequently folded the S1 gneissic cleavage and high strain zones but without developing its own fabric. / Multi-scale 4-dimensional geological modeling of the Gällivare area
307

Effect of Light and Other Environmental Factors on Growth and Carotenogenesis of Corynebacterium Species Strain 7E1C

Howard, Marta E. 08 1900 (has links)
This investigation studies effects of environmental factors on growth and carotenogenesis in Corynebacterium strain 7ElC. Changes in pH were found to effect growth more than carotenogenesis. However, certain nutrients or long incubation periods stimulated carotenoid formation more than growth. Dark conditions in a mineral salts-glucose medium stimulated growth, but minimized carotenogenesis. Tryptic soy broth or yeast extract elicited carotenogenesis in darkness. Although brief light exposure during inoculation was photoinductive, continuous exposure to light following inoculation was required for maximum pigment synthesis. Dark grown stationary phase cells required 24-hours of light for maximum pigment synthesis. Chloramphenicol inhibition of carotenogenesis in dark grown cells exposed to light showed that enzymes needed for carotenoid synthesis were absent from dark grown cultures.
308

Structural and Kinematic Evolution of the Lower Crust

Betka, Paul 11 September 2008 (has links)
Abstract Three dimensional finite strain and kinematic data from the Resolution Island Shear Zone, Fiordland, New Zealand record the progressive evolution of a lower crustal metamorphic core complex. The Resolution Island Shear Zone is a mid-Cretaceous (~114-90 Ma) extensional shear zone that juxtaposes high-pressure (P~17-19 kbar) garnet-granulite and eclogite facies orthogneiss from the lower crust against mid-crustal (P~6-8 kbar) orthogneiss and paragneiss along a low-angle upper amphibolite facies ductile normal fault. In the lower plate of the Resolution Island Shear Zone the high-pressure garnetgranulite and eclogite facies gneissic foliations (S1) are attenuated by granulite facies extensional shear zone foliations (S2). Retrograde metamorphism marked by the breakdown of omphacite and garnet to amphibole and feldspar in S2 foliation records the unloading of the lower plate during extension. Continued extension localized strain into weaker amphibole and feldspar-bearing lithologies. Upper amphibolite facies shear zones anastomose around rigid lenses that preserve the S1 and S2 fabric. Upper amphibolite facies shear zone fabrics (S3/L3) that envelop these pods display a regional-scale domeand- basin pattern. These shear zones coalesce and form the Resolution Island Shear Zone. Coeval with the formation of the Resolution Island Shear Zone, a conjugate, southwest dipping, and lesser magnitude shear zone termed the Wet Jacket Shear Zone developed in the upper plate of the Resolution Island Shear Zone. Three-dimensional strain analyses from S3/L3 fabric in the Resolution Island Shear Zone show prolate-shaped strain ellipsoids. Stretching axes (X) from measured finite strain ellipsoids trend northeast and southwest and are subparallel to L3 mineral stretching lineations. Shortening axes (Y, Z) are subhorizontal and subvertical, respectively, and rotate through the YZ plane of the finite strain ellipsoid. This pattern reflects the dome-and-basin geometry displayed by anastomosing S3 foliations and indicates the Resolution Island Shear Zone developed in the field of constriction. Threedimensional kinematic results indicate a coaxial-dominated rotation of stretching lineations toward the X-axis in both the XZ and XY planes of the finite strain ellipsoid. Results suggest that a lower crustal metamorphic core complex developed in a constrictional strain field with components of coaxial-dominated subvertical and subhorizontal shortening. Mid-Cretaceous (~114-90 Ma) extensional structures exposed in Fiordland, including the Resolution Island, Wet Jacket, Mount Irene and Doubtful Sound shear zones and the Paparoa metamorphic core complex allows the reconstruction of a crustal column that describes the geometry of mid-Cretaceous continental rifting of Gondwana. The overall symmetry of crustal-scale structures during continental extension suggests kinematic links between flow in the lower crust and the geometry and mode of continental extension. This result is consistent with numerical models of lithospheric rifting that predict the lower crust has a primary control on the style of continental extension.
309

Advances in Rock Fabric Quantification and the Reconstruction of Progressive Dike Replacement in the Coastal Batholith of Central Chile

Webber, Jeffrey R. 10 July 2012 (has links)
The Coastal Batholith of central Chile preserves structures that record the concentration, migration, transportation, and emplacement of magma during the progressive construction of a sheeted dike complex. This sheeted dike complex is divided into three main structural-geographic domains. The northwestern domain contains an abundance of deformed microgranitoid enclaves that host features that facilitated the concentration of melt during crystallization. The formation of interconnected dilational sites produced an array of lecocratic zones that may have formed larger dike networks that facilitated the transportation of melt-rich magma producing new magmatic units of similar mineralogy. The central domain is characterized by the presence of two tonalitic units that contain enclave swarms distinguished by their general packing arrangement and degree of elongation. Di erences in the fabric architecture of these enclave swarms are displayed by two separate three-dimensional fabric analyses using the Rf/ method, which indicates an abrupt transition from low-distortion oblate fabrics to more distorted prolate geometries. These changes are compared to the statistical alignment of feldspar phenocrysts that indicate general attening in both units with a higher degree of alignment within the XZ fabric plane for the younger tonalite. The third (southeastern) domain is distinguished by meter-scale, compositionally and texturally diverse sheeted dikes intercalated with biotite-rich migmatite screens of the host gneiss along the pluton margin. The need to process large quantities of fabric data from central Chile presented the opportunity to establish a comprehensive method for the quanti cation of three-dimensional rock fabrics following the Rf/ and Fry methods. In order to test the utility of this procedure, a three-dimensional synthetic model of known strain shape, magnitude, and orientation was processed. The results of this assessment indicate that the procedure accurately calculated the expected state of strain within a small margin of error. Finally, a natural example is presented to test the method's ability to quantify the fabrics of deformed rocks. This example is a \lineation much greater than foliation" (L>>S) metagranite augen gneiss from the Coastal Batholith of central Chile. This analysis resulted in calculated fabric ellipsoids from both the Rf/ and Fry methods that clearly display signi cantly prolate geometries at moderate distortions. The development of the three-dimensional rock fabric quanti cation procedure highlighted the need to teach analytical strain techniques in three-dimensions. To allow for this application, an interactive R script (FRY3D) was created speci cally to aid in the instruction and visualization of three-dimensional strain calculation at the advanced undergraduate and graduate levels. This tutorial was presented to a structural geology course of 20 students at the undergraduate level with a two part semi-quantitative concept assessment before and after the presentation. The results of this assessment indicate a positive increase in student's understanding of three-dimensional nite strain. Finally, a simple examination of analytical error associated with the Panozzo projection technique for strain analysis is presented and indicates relationships among population size, strain magnitude, and initial fabric. My results suggest that this method is most robust when applied to sections containing greater than approximately 125 lines. Moreover, the magnitude-dependent error indicates that the method may be better suited for rocks deformed at low to moderate strains. I recommend an adaption to the initial conditional assumptions for this method that lines exhibit an initial radial symmetry when recentered to a common point.
310

The interplay between deformation and metamorphism during strain localization in the lower crust: Insights from Fiordland, New Zealand

Dianiska, Kathryn Elise 01 January 2015 (has links)
In this thesis, I present field, microstructural, and Electron Backscatter Diffraction (EBSD) analyses of rock fabrics from high strain zones in exposures of lower crustal Cretaceous plutons at Breaksea Entrance, Fiordland, New Zealand. The interplay between deformation and metamorphism occurs across multiple scales at the root of a continental arc. I show a series of steps in which retrogressive metamorphism is linked to the accommodation of deformation. I define three main phases of deformation and metamorphism at Breaksea Entrance. The first phase (D1) involved emplacement of dioritic to gabbroic plutons at depths up to 60 km. The second phase (D2) is characterized by deformation and metamorphism at the granulite and eclogite facies that produced high strain zones with linear fabrics, isoclinal folding of igneous layering, and asymmetric pressure shadows around mafic aggregates. New structural analyses from Hāwea Island in Breaksea Entrance reveal the development of doubly plunging folds that define subdomes within larger, kilometer-scale gneiss domes. The development and intensification of S2 foliations within the domes was facilitated by the recrystallization of plagioclase and clinopyroxene at the micro-scale (subgrain rotation and grain boundary migration recrystallization), consistent with metamorphism at the granulite and eclogite facies and climb-accommodated dislocation creep. EBSD data show a strong crystallographic preferred orientation in plagioclase during D2 deformation. The third phase (D3) is characterized by deformation and metamorphism at the upper amphibolite facies that produced sets of discrete, narrow shear zones that wrap and encase lozenges of older fabrics. Structural analyses reveal a truncation and/or transposition relationship between the older S2 and the younger S3 foliations developed during D3. Progressive localization of deformation during cooling, hydration, and retrogression, resulted in the breakdown of garnet and pyroxene to form hornblende, biotite, fine plagioclase and quartz. EBSD data show a strong crystallographic preferred orientation in hornblende. During D3, hornblende and biotite accommodated most of the strain through fluid-assisted diffusion creep. The last two events (D2 and D3) reflect a transition in deformation and metamorphism during exhumation, as well as a focusing of strain and evolving strain localization mechanisms at the root of a continental arc. An examination of structures at multiple scales of observation reveals that fabrics seen in the field are a composite of multiple generations of deformation and metamorphism.

Page generated in 0.1292 seconds