Spelling suggestions: "subject:"ctrain date"" "subject:"ctrain rate""
31 |
Constitutive Behavior of Aluminum Alloy Sheet At High Strain RatesSmerd, Rafal January 2005 (has links)
In this work, three aluminum sheet alloys, AA5754, AA5182 and AA6111, which are prime candidates for replacing mild steel in automobile structures, are tested in tension at quasi-static and high strain rates. <br /><br /> In order to characterize the constitutive response of AA5754, AA5182 and AA6111 at high strain rates, tensile experiments were carried out at strain rates between 600 s<sup>-1</sup> and 1500 s<sup>-1</sup>, and at temperatures between ambient and 300°C, using a tensile split Hopkinson bar (TSHB) apparatus. As part of this research, the apparatus was modified in order to provide an improved means of gripping the sheet specimens. Quasi-static experiments also were conducted using an Instron machine. <br /><br /> The experimental data was fit to the Johnson-Cook and Zerilli-Armstrong constitutive models for all three alloys. The resulting fits were evaluated by numerically simulating the tensile experiments conducted using a finite element approach.
|
32 |
Characterization of Shear Bands in Ultrafine-grained Commercial Purity AluminumChu, Hung-chia 20 August 2012 (has links)
In this study, ultrafine-grained commercial purity AA1050 aluminum was produced by equal channel angular extrusion (ECAE).Annealing at 250¢J was able to give a grain size of 0.59£gm. Specimens were compressed along different ECAE axis under a strain rate of 7.1¡Ñ10-4 s-1at room temperature. Compression tests were also performed under 5¡Ñ10-5 s-1, 7.1¡Ñ10-4 s-1 ,and 10-1 s-1 strain rates at 100¢J,150¢J ,and 175¢J. Surface morphology of specimens was observed by optical and scanning electron microscopes to study the generation of shear bands. Texture within shear bands was analyzed by electron backscattered diffraction (EBSD).
The present research found that, different compression direction has little effect on the generation of shear bands. Increasing compression temperature and decreasing strain rates have the effect of decreasing the degree of strain localization of shear bands. Shear band deformation is compatible with the uniform deformation occurred outside shear bands. Texture change within shear bands is rotated about an axis perpendicular to the specimen surface, and strengthens the texture component.
|
33 |
Low Temperature Deformation Behavior of Ultrafine Grained Pure AluminumChang, Ming-Yun 10 August 2005 (has links)
none
|
34 |
The Impact Fracture of Solder Joints by Numerical Simulation MethodsLi, Bo-Yu 26 August 2005 (has links)
With electronic packaging towards the development of lead free process, the research on the portable electronic devices subject to impact load is emphasized gradually. At present, for drop test and cyclic bending test, most of the failure modes lie on the modes of "fracturing in IMC layer" or "fracturing on IMC/solder boundary". The purpose of this work is to use 3D numerical analysis software ANSYS/LS_DYNA, that were found out a proper numerical model, to further analyze the impact fracture of lead-free solder.
From the numerical results, the strain rate of solder joint ranges from 103 s-1 to 104 s-1 under an impact velocity of 2 m/s. At this strain rate, the mechanical properties of solder joint could be effectively investigated. When IMC strength is smaller than 300MPa, the main failure mode is fracturing of IMC; whilst, IMC strength is greater than 300MPa, the failure mode becomes fracturing of bulk solder, but the failure mode of fracturing of IMC and a partial solder requires a model with more fine meshes to simulate. Different velocities did not affect the numerical results significantly, because the material parameters of a solder ball is strongly dependent on strain rate. Also, we found that the impact test in reality does not present a shear-dominant mode alone even when the impact angle is 0¢X. While using simulation to carry out the dynamic experiment, it can be observed that the course of solder joint suffering the damage provides a good reference and contrast for the experimental work in the future.
|
35 |
Parametric Study of Solder Ball due to Impact TestTao, Tsai-tsung 18 July 2006 (has links)
With the electronic packaging towards the rapid development of lead free process, the related research on the portable electronic devices subject to impact load is emphasized urgently. At present, the failure modes of fracturing in IMC layer and fracturing on IMC/solder boundary are mostly encountered due to drop test and cyclic bending test respectively. The purpose of this work is to use 3D numerical analysis software ANSYS/LS_DYNA, that were found to be a suitable numerical model for further analyzing the impact fracture of lead-free solder. The relationship between simulation and ball impact test system was compared and the effects of variable parameters on solder balls subjected to impact loading was investigated. Also, the transient deformation and fracturing of solder joints subjected to the impact load were studied numerically and experimentally. Then, the transient response and the failure modes of the solder joint due to impact load were predicted by varied strain rate tests.
From the numerical results, the strain rate mechanical properties of solder joint due to high can be effectively obtained. The difference of IMC strength caused three kinds of failure modes of the solder ball, however the failure mode of fracturing in IMC and a party of solder requires a model to simulate with more refined meshes. Different velocities affected the numerical results significantly. The higher the velocity of impact test applied, the lower the impact loading received. That is mainly attributed to the material parameters adopted of a solder ball is strongly dependent on the strain rate considered. Also, it is found that the impact test in reality does not result in a shear-dominant failure mode. While using dynamic simulation instead of the experiment, the damage process of solder joint can be observed. That provides a good reference and contrast for the experimental work in the future.
|
36 |
Computational mesoscale modelling of concrete material under high strain rate loadingSong, Zhenhuan January 2013 (has links)
Cement-based composite materials are widely used in engineering applications. The strength and damage patterns of such materials depend upon the properties of the constituent components as well as the microstructure. Three scale levels are generally recognized in the analysis of the mechanical behaviour of composites, namely, macro-scale, meso-scale, and nano- or atomistic scale. Modelling of the mechanical properties at the meso-level provides a powerful means for the understanding of the physical processes underlying the macroscopic strength and failure behaviour of the composite materials under various loading conditions. This thesis endeavours to develop effective and efficient mesoscale models for cement-based composites, especially concrete, with a focus on dynamic analysis applications and in a three-dimensional stress-strain environment. These models are subsequently applied to investigate the intrinsic microscopic mechanisms governing the behaviour of such material under complex and high rate loadings, such as those due to shock, impact and blast. To cater to the needs of dynamic analysis under complex stress conditions, a general 2-dimensinal (2D) mesoscale modelling framework is further developed with the incorporation of the 3-D effect. This framework integrates the capabilities of MATLAB programming for the generation of the mesoscale geometric structure, ANSYS-CAE for finite element mesh generation, and the hydrocode LS-DYNA for solving the dynamic response of the model. The 3D effect is incorporated via a novel pseudo-3D modelling scheme such that the crucial lateral confinement effect during the transient dynamic response can be realistically represented. With the above mesoscale model a comprehensive investigation is conducted on the dynamic increase factor (DIF) in the concrete strength under compression, with particular focus on the variation trend at different strain rate regimes, and the key influencing factors. The wave propagation effect under high strain rate is scrutinised from a strip-by-strip perspective, and the correlation between the externally measured stress-strain quantities and the actual processes within the specimen is examined. The contribution of the material heterogeneity, as well as the structural effect (inertia), in the dynamic strength enhancement is evaluated. The classical Brazilian (splitting) test for the dynamic tensile behaviour of concrete is also investigated with the aid of the mesoscale model. Of particular interest here is the validity of such an indirect setup in reproducing the tensile behaviour of the specimen under high strain rates, as well as the effect of the heterogeneity in the dynamic tensile strength. Complications are found to arise as the loading rate increases. The change of the damage patterns with increase of the loading rate and the implications on the interpretation of the results are discussed. As an ideal solution to modelling of the 3-D effects, a methodology for the creation of a complex real 3-dimensional mesoscale model is put forward in the last part of the thesis. A geometric concept, called convex hull, is adopted for the representation of aggregates, and this makes it possible to utilize the relevant algorithms in computational geometry for the present purpose of generation of random 3-D aggregates. A take-and-place procedure is employed to facilitate the generation of the complete 3-D meso-structure. Associated techniques are developed for fast detection of particle inclusion-intersection. An example 3D mesoscale model is presented and representative numerical simulations are carried out to demonstrate the performance of the 3-D mesoscale modelling scheme.
|
37 |
Characteristics of Reinforced Concrete Bond at High Strain RatesJacques, Eric January 2016 (has links)
Despite the on-going intensity of research in the field of protective structural design, one topic that has been largely ignored in the literature is the effect of high strain rates on the bond between reinforcing steel and the surrounding concrete. Therefore, a comprehensive research program was undertaken to establish the effect of high strain rates on reinforced concrete bond. The experimental research consisted of the construction and testing of fourteen flexural beam-end bond specimens and twenty-five lap-spliced reinforced concrete beams. The physical and material properties of the specimens were selected based on a range of design parameters known to significantly influence bond strength. In order to establish a baseline for comparison, approximately half of the total number of specimens were subjected to static testing, while the remainder were subjected to dynamic loading generated using a shock tube. The strain rates generated using the shock tube were consistent with those obtained for mid- and far-field explosive detonation. Results of the beam-end and lap splice beam tests showed that the flexural behaviour of reinforced concrete was significantly stronger and stiffer when subjected to dynamic loading. Furthermore, the high strain rate bond strength was always greater than the corresponding low strain rate values, yielding an average dynamic increase factor (DIF) applied to ultimate bond strength of 1.28.
Analysis of the low and high strain rate test results led to the development of empirical expressions describing the observed strain rate sensitivity of reinforced concrete bond for spliced and developed bars with and without transverse reinforcement. The predictive accuracy of the proposed DIF expressions was assessed against the experimental results and data from the literature. It was found that the dynamic bond strength of reinforced concrete can be predicted with reasonably good accuracy and that the proposed DIF expressions can be used for analysis and design of protective structures.
An analytical method was also developed to predict the flexural load-deformation behaviour of reinforced concrete members containing tension lap splices. The analysis incorporated the effect of reinforcement slip through the use of pseudo-material stress-strain relationships, in addition to giving consideration to the effect of high strain rates on bond-slip characteristics and on the material properties of concrete and steel. A comparison of the analytical predictions with experimental data demonstrated that the proposed analysis technique can reasonably predict the flexural response of beams with tension lap splices. The results also demonstrated that the model is equally applicable for use at low- and high-strain rates, such as those generated during blast and impact.
|
38 |
Dynamic Deformation and Shear Localization in Friction-Stir Processed Al0.3CoCrFeNi and Fe50Mn30Co10Cr10 High-Entropy AlloysMacdonald, Neil 08 1900 (has links)
High entropy alloys (HEAs) are a relatively new class of solid solution alloys that contain multiple principal elements to take advantage of their high configurational entropy, sluggish diffusion, lattice distortion, and the cocktail effect. In recent development, work hardening mechanisms known as twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) have been found active in Al0.3CoCrFeNi (molar fraction) and Fe50Mn30Co10Cr10 (at %) HEA compositions. Friction-stir processing was done to increase the mechanical properties and improve the microstructure of the alloys for the purpose of high strain rate performance. Quasi-static tensile tests as well as top-hat geometry Split-Hopkinson pressure bar tests were conducted to view the mechanical properties as well as view the microstructural evolution at dynamic strain rates. Overall, the Al0.3CoCrFeNi condition after friction-stir processing and heat treatment has proved to have the best mechanical properties, and selecting from the conditions in this study, Al0.3CoCrFeNi has better shear localization resistance.
|
39 |
NONLINEAR STRAIN RATE DEPENDENT COMPOSITE MODEL FOR EXPLICIT FINITE ELEMENT ANALYSISZheng, Xiahua 17 May 2006 (has links)
No description available.
|
40 |
Hydrodynamic Modeling Of Impact Craters In IceSherburn, Jesse Andrew 15 December 2007 (has links)
In this study, impact craters in water ice are modeled using the hydrodynamic code CTH. In order to capture impact craters in ice an equation of state and a material model are created and validated. The validation of the material model required simulating the Split Pressure Hopkinson Bar (SPHB) experimental apparatus. The SPHB simulation was first compared to experiments completed on Al 6061-T6, then the ice material model was validated. After validation, the cratering simulations modeled known experiments found in the literature. The cratering simulations captured the bulk physical aspects of the experimental craters, and the differences are described. Analysis of the crater simulations showed the damaged volume produced by the projectile was proportional to the projectile’s momentum. Also, the identification of four different stages in the crater development of ice (contact and compression, initial damage progression, crater shaping, and ejected damaged material) are described.
|
Page generated in 0.1518 seconds